def get_distdb_cog(model_id): if not model_id in M2DDB: from cog.torque import Graph dbdir = os.path.join(DB_DIR, model_id, DB_NAMESPACE_DISTS) dbfn = os.path.join(DB_DIR, model_id, DB_NAMESPACE_DISTS + '.edgelist.txt') if not os.path.exists(dbdir): os.makedirs(dbdir) g = Graph(graph_name=DB_NAMESPACE_DISTS, cog_dir=dbdir) if os.path.exists(dbfn): return g.load_edgelist(dbfn, DB_NAMESPACE_DISTS) M2DDB[model_id] = g return M2DDB[model_id]
def test_torque_load_csv(self): csv_file = "test/test-data/books.csv" if os.path.exists("test-data/books.csv"): csv_file = "test-data/books.csv" g = Graph(graph_name="books5") g.load_csv(csv_file, "isbn") # print(g.scan()) actual = g.scan(20, 'e') expected = { 'result': [{ 'id': 'ratings_4' }, { 'id': 'best_book_id' }, { 'id': 'work_text_reviews_count' }, { 'id': 'original_publication_year' }, { 'id': 'average_rating' }, { 'id': 'ratings_1' }, { 'id': 'language_code' }, { 'id': 'image_url' }, { 'id': 'books_count' }, { 'id': 'work_ratings_count' }, { 'id': 'isbn13' }, { 'id': 'title' }, { 'id': 'ratings_5' }, { 'id': 'ratings_3' }, { 'id': 'small_image_url' }, { 'id': 'ratings_count' }, { 'id': 'isbn' }, { 'id': 'book_id' }, { 'id': 'authors' }, { 'id': 'ratings_2' }] } self.assertTrue(actual == expected) self.assertTrue( ordered(g.v('Kathryn Stockett').inc().out("title").all()) == ordered({'result': [{ 'id': 'The Help' }]})) g.close()
def setUpClass(cls): if not os.path.exists("/tmp/" + DIR_NAME): os.mkdir("/tmp/" + DIR_NAME) data_dir = "test/test-data/test_func.nq" # choose appropriate path based on where the test is called from. if os.path.exists("test-data/test_func.nq"): data_dir = "test-data/test_func.nq" TorqueTest.g = Graph(graph_name="people", cog_home=DIR_NAME) TorqueTest.g.load_triples(data_dir, "people") print(">>> test setup complete.\n")
def test_aaa_before_all_tests(self): if not os.path.exists("/tmp/" + DIR_NAME): os.mkdir("/tmp/" + DIR_NAME) if os.path.exists("test-data/test.nq"): loader = Loader("/tmp/" + DIR_NAME) loader.load_triples("test-data/test.nq", "people") else: loader = Loader("/tmp/" + DIR_NAME) loader.load_triples("test/test-data/test.nq", "people") TorqueTest.cog = Cog("/tmp/" + DIR_NAME) TorqueTest.g = Graph(graph_name="people", cog_dir="/tmp/" + DIR_NAME)
def test_torque_2(self): TorqueTest2.g = Graph(graph_name="better_graph", cog_home=DIR_NAME) TorqueTest2.g.put("A", "is better than", "B")\ .put("B", "is better than", "C")\ .put("A", "is better than", "D")\ .put("Z", "is better than", "D")\ .put("D", "is smaller than", "F") expected = {'result': [{'id': 'B'}, {'id': 'D'}]} actual = TorqueTest2.g.v("A").out(["is better than"]).all() self.assertTrue(ordered(expected) == ordered(actual)) self.assertTrue( TorqueTest2.g.v("A").out(["is better than"]).count() == 2) self.assertTrue(TorqueTest2.g.v().count() == 6) TorqueTest2.g.close()
def get_distdb_gt(model_id): if not model_id in M2DDB: dbdir = os.path.join(DB_DIR, model_id) dbfn = os.path.join(DB_DIR, model_id, DB_NAMESPACE_DISTS + '.gt') if not os.path.exists(dbdir): os.makedirs(dbdir) if os.path.exists(dbfn): g = load_graph(dbfn, fmt='gt') else: g = Graph() M2DDB[model_id] = g return M2DDB[model_id]
def test_torque_load_nq(self): nq_file = "test/test-data/100lines.nq" if os.path.exists("test-data/100lines.nq"): nq_file = "test-data/100lines.nq" g = Graph(graph_name="movies3", cog_path_prefix="/tmp/" + DIR_NAME) g.load_triples(nq_file, 'movies3') res = g.v("</en/joe_palma>").inc(["</film/performance/actor>"]).count() g.close() self.assertEqual(res, 7) #reload test g2 = Graph(graph_name="movies3", cog_path_prefix="/tmp/" + DIR_NAME) res2 = g2.v("</en/joe_palma>").inc(["</film/performance/actor>" ]).count() g2.close() self.assertEqual(res2, 7, "reload test failed.")