Beispiel #1
0
def execute(gpu,
            exp_batch,
            exp_alias,
            state_dict,
            suppress_output=True,
            number_of_workers=12):
    """
        The main training function. This functions loads the latest checkpoint
        for a given, exp_batch (folder) and exp_alias (experiment configuration).
        With this checkpoint it starts from the beginning or continue some training.
    Args:
        gpu: The GPU number
        exp_batch: the folder with the experiments
        exp_alias: the alias, experiment name
        suppress_output: if the output are going to be saved on a file
        number_of_workers: the number of threads used for data loading

    Returns:
        None

    """
    try:
        # We set the visible cuda devices to select the GPU
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu
        g_conf.VARIABLE_WEIGHT = {}
        # At this point the log file with the correct naming is created.
        # You merge the yaml file with the global configuration structure.
        merge_with_yaml(os.path.join('configs', exp_batch,
                                     exp_alias + '.yaml'))
        set_type_of_process('train')
        # Set the process into loading status.
        coil_logger.add_message('Loading', {'GPU': gpu})

        # Put the output to a separate file if it is the case

        if suppress_output:
            if not os.path.exists('_output_logs'):
                os.mkdir('_output_logs')
            sys.stdout = open(os.path.join(
                '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' +
                str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        if coil_logger.check_finish('train'):
            coil_logger.add_message('Finished', {})
            return

        # Preload option
        if g_conf.PRELOAD_MODEL_ALIAS is not None:
            checkpoint = torch.load(
                os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH,
                             g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints',
                             str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth'))

        # Get the latest checkpoint to be loaded
        # returns none if there are no checkpoints saved for this model
        checkpoint_file = get_latest_saved_checkpoint()
        if checkpoint_file is not None:
            checkpoint = torch.load(
                os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                             str(get_latest_saved_checkpoint())))
            iteration = checkpoint['iteration']
            best_loss = checkpoint['best_loss']
            best_loss_iter = checkpoint['best_loss_iter']
        else:
            iteration = 0
            best_loss = 10000.0
            best_loss_iter = 0

        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the positions from the root directory as a in a vector.
        full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"],
                                    g_conf.TRAIN_DATASET_NAME)

        # By instantiating the augmenter we get a callable that augment images and transform them
        # into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        # Instantiate the class used to read a dataset. The coil dataset generator
        # can be found
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_name=str(g_conf.NUMBER_OF_HOURS) +
                              'hours_' + g_conf.TRAIN_DATASET_NAME)
        print("Loaded dataset")

        data_loader = select_balancing_strategy(dataset, iteration,
                                                number_of_workers)
        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
        model.cuda()

        if state_dict != '':
            seg_model = ERFNet_Fast(2)
            seg_model = load_my_state_dict(seg_model, torch.load(state_dict))
            seg_model.cuda()

        optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE)

        if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None:
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            accumulated_time = checkpoint['total_time']
            loss_window = coil_logger.recover_loss_window('train', iteration)
        else:  # We accumulate iteration time and keep the average speed
            accumulated_time = 0
            loss_window = []

        print("Before the loss")

        criterion = Loss(g_conf.LOSS_FUNCTION)
        color_transforms = Colorizes(2)
        board = Dashboard(8097)

        # Loss time series window
        for data in data_loader:

            # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times,
            # add a stop on the _logs folder that is going to be read by this process
            if g_conf.FINISH_ON_VALIDATION_STALE is not None and \
                    check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE):
                break
            """
                ####################################
                    Main optimization loop
                ####################################
            """

            iteration += 1
            if iteration % 1000 == 0:
                adjust_learning_rate_auto(optimizer, loss_window)

            # get the control commands from float_data, size = [120,1]

            capture_time = time.time()
            controls = data['directions']
            # The output(branches) is a list of 5 branches results, each branch is with size [120,3]
            model.zero_grad()
            if state_dict != '':
                with torch.no_grad():
                    repre = seg_model(torch.squeeze(data['rgb'].cuda()),
                                      only_encode=False)
                    inputs = repre
                    imgs = color_transforms(inputs)
                inputs = inputs.float().cuda()
            else:
                inputs = torch.squeeze(data['rgb'].cuda())

            # vis
            board.image(
                torch.squeeze(data['rgb'])[0].cpu().data,
                '(train) input iter: ' + str(iteration))
            board.image(imgs[0].cpu().data,
                        '(train) output iter: ' + str(iteration))

            branches = model(inputs, dataset.extract_inputs(data).cuda())
            loss_function_params = {
                'branches': branches,
                'targets': dataset.extract_targets(data).cuda(),
                'controls': controls.cuda(),
                'inputs': dataset.extract_inputs(data).cuda(),
                'branch_weights': g_conf.BRANCH_LOSS_WEIGHT,
                'variable_weights': g_conf.VARIABLE_WEIGHT
            }
            loss, _ = criterion(loss_function_params)
            loss.backward()
            optimizer.step()
            """
                ####################################
                    Saving the model if necessary
                ####################################
            """

            if is_ready_to_save(iteration):

                state = {
                    'iteration': iteration,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'optimizer': optimizer.state_dict(),
                    'best_loss_iter': best_loss_iter
                }
                torch.save(
                    state,
                    os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                                 str(iteration) + '.pth'))
            """
                ################################################
                    Adding tensorboard logs.
                    Making calculations for logging purposes.
                    These logs are monitored by the printer module.
                #################################################
            """
            coil_logger.add_scalar('Loss', loss.data, iteration)
            coil_logger.add_image('Image', torch.squeeze(data['rgb']),
                                  iteration)
            if loss.data < best_loss:
                best_loss = loss.data.tolist()
                best_loss_iter = iteration

            # Log a random position
            position = random.randint(0, len(data) - 1)

            output = model.extract_branch(torch.stack(branches[0:4]), controls)
            error = torch.abs(output - dataset.extract_targets(data).cuda())

            accumulated_time += time.time() - capture_time

            coil_logger.add_message(
                'Iterating', {
                    'Iteration':
                    iteration,
                    'Loss':
                    loss.data.tolist(),
                    'Images/s':
                    (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                    'BestLoss':
                    best_loss,
                    'BestLossIteration':
                    best_loss_iter,
                    'Output':
                    output[position].data.tolist(),
                    'GroundTruth':
                    dataset.extract_targets(data)[position].data.tolist(),
                    'Error':
                    error[position].data.tolist(),
                    'Inputs':
                    dataset.extract_inputs(data)[position].data.tolist()
                }, iteration)
            loss_window.append(loss.data.tolist())
            coil_logger.write_on_error_csv('train', loss.data)
            print("Iteration: %d  Loss: %f" % (iteration, loss.data))

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except RuntimeError as e:

        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
Beispiel #2
0
def execute(gpu,
            exp_batch,
            exp_alias,
            suppress_output=True,
            number_of_workers=12,
            encoder_params=None):
    """
        The main training function. This functions loads the latest checkpoint
        for a given, exp_batch (folder) and exp_alias (experiment configuration).
        With this checkpoint it starts from the beginning or continue some training.
    Args:
        gpu: The GPU number
        exp_batch: the folder with the experiments
        exp_alias: the alias, experiment name
        suppress_output: if the output are going to be saved on a file
        number_of_workers: the number of threads used for data loading

    Returns:
        None

    """
    try:
        # We set the visible cuda devices to select the GPU
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu
        g_conf.VARIABLE_WEIGHT = {}
        # At this point the log file with the correct naming is created.
        # You merge the yaml file with the global configuration structure.
        merge_with_yaml(
            os.path.join('configs', exp_batch, exp_alias + '.yaml'),
            encoder_params)
        set_type_of_process('train')
        # Set the process into loading status.
        coil_logger.add_message('Loading',
                                {'GPU': os.environ["CUDA_VISIBLE_DEVICES"]})

        seed_everything(seed=g_conf.MAGICAL_SEED)

        # Put the output to a separate file if it is the case

        if suppress_output:
            if not os.path.exists('_output_logs'):
                os.mkdir('_output_logs')
            sys.stdout = open(os.path.join(
                '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' +
                str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        if coil_logger.check_finish('train'):
            coil_logger.add_message('Finished', {})
            return

        # Preload option
        print(" GOING TO LOAD")
        if g_conf.PRELOAD_MODEL_ALIAS is not None:
            print(" LOADING A PRELOAD")
            checkpoint = torch.load(
                os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH,
                             g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints',
                             str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth'))

        else:

            # Get the latest checkpoint to be loaded
            # returns none if there are no checkpoints saved for this model
            checkpoint_file = get_latest_saved_checkpoint()
            if checkpoint_file is not None:
                print('loading previous checkpoint ', checkpoint_file)
                checkpoint = torch.load(
                    os.path.join('_logs', g_conf.EXPERIMENT_BATCH_NAME,
                                 g_conf.EXPERIMENT_NAME, 'checkpoints',
                                 str(get_latest_saved_checkpoint())))
                iteration = checkpoint['iteration']
                best_loss = checkpoint['best_loss']
                best_loss_iter = checkpoint['best_loss_iter']
            else:
                iteration = 0
                best_loss = 100000000.0
                best_loss_iter = 0

        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the positions from the root directory as a in a vector.
        #full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME)

        # By instantiating the augmenter we get a callable that augment images and transform them
        # into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        # We can save preload dataset depends on the json file name, then no need to load dataset for each time with the same dataset
        if len(g_conf.EXPERIENCE_FILE) == 1:
            json_file_name = str(
                g_conf.EXPERIENCE_FILE[0]).split('/')[-1].split('.')[-2]
        else:
            json_file_name = str(g_conf.EXPERIENCE_FILE[0]).split(
                '/')[-1].split('.')[-2] + '_' + str(
                    g_conf.EXPERIENCE_FILE[1]).split('/')[-1].split('.')[-2]
        dataset = CoILDataset(transform=augmenter,
                              preload_name=g_conf.PROCESS_NAME + '_' +
                              json_file_name + '_' + g_conf.DATA_USED)

        #dataset = CoILDataset(transform=augmenter, preload_name=str(g_conf.NUMBER_OF_HOURS)+ 'hours_' + g_conf.TRAIN_DATASET_NAME)
        print("Loaded Training dataset")

        data_loader = select_balancing_strategy(dataset, iteration,
                                                number_of_workers)
        if g_conf.MODEL_TYPE in ['separate-affordances']:
            model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION,
                              g_conf.ENCODER_MODEL_CONFIGURATION)

        model.cuda()
        optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE)

        print(model)

        # we use the pre-trained encoder model to extract bottleneck Z and train the E-t-E model

        if g_conf.MODEL_TYPE in ['separate-affordances']:
            encoder_model = EncoderModel(g_conf.ENCODER_MODEL_TYPE,
                                         g_conf.ENCODER_MODEL_CONFIGURATION)
            encoder_model.cuda()
            encoder_model.eval()
            # To freeze the pre-trained encoder model
            if g_conf.FREEZE_ENCODER:
                for param_ in encoder_model.parameters():
                    param_.requires_grad = False
            if encoder_params is not None:
                encoder_checkpoint = torch.load(
                    os.path.join(
                        '_logs', encoder_params['encoder_folder'],
                        encoder_params['encoder_exp'], 'checkpoints',
                        str(encoder_params['encoder_checkpoint']) + '.pth'))
                print(
                    "Encoder model ",
                    str(encoder_params['encoder_checkpoint']), "loaded from ",
                    os.path.join('_logs', encoder_params['encoder_folder'],
                                 encoder_params['encoder_exp'], 'checkpoints'))
                encoder_model.load_state_dict(encoder_checkpoint['state_dict'])
                if g_conf.FREEZE_ENCODER:
                    encoder_model.eval()
                    # To freeze the pre-trained encoder model
                    for param_ in encoder_model.parameters():
                        param_.requires_grad = False
                else:
                    optimizer = optim.Adam(list(model.parameters()) +
                                           list(encoder_model.parameters()),
                                           lr=g_conf.LEARNING_RATE)

            for name_encoder, param_encoder in encoder_model.named_parameters(
            ):
                if param_encoder.requires_grad:
                    print('  Unfrozen layers', name_encoder)
                else:
                    print('  Frozen layers', name_encoder)

        if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None:
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            accumulated_time = checkpoint['total_time']
            loss_window = coil_logger.recover_loss_window('train', iteration)
        else:  # We accumulate iteration time and keep the average speed
            accumulated_time = 0
            loss_window = []

        for name, param in model.named_parameters():
            if param.requires_grad:
                print('  Unfrozen layers', name)
            else:
                print('  Frozen layers', name)

        print("Before the loss")

        # Loss time series window
        for data in data_loader:

            # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times,
            # add a stop on the _logs folder that is going to be read by this process
            if g_conf.FINISH_ON_VALIDATION_STALE is not None and \
                    check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE):
                break
            """
                ####################################
                    Main optimization loop
                ####################################
            """

            if iteration % 1000 == 0:
                adjust_learning_rate_auto(optimizer, loss_window)

            model.zero_grad()
            if not g_conf.FREEZE_ENCODER:
                encoder_model.zero_grad()

            if g_conf.LABELS_SUPERVISED:
                inputs_data = torch.cat(
                    (data['rgb'], torch.zeros(g_conf.BATCH_SIZE, 1, 88, 200)),
                    dim=1).cuda()
            else:
                inputs_data = torch.squeeze(data['rgb'].cuda())

            if g_conf.MODEL_TYPE in ['separate-affordances']:
                #TODO: for this two encoder models training, we haven't put speed as input to train yet

                if g_conf.ENCODER_MODEL_TYPE in [
                        'action_prediction', 'stdim', 'forward',
                        'one-step-affordances'
                ]:

                    e, inter = encoder_model.forward_encoder(
                        inputs_data,
                        dataset.extract_inputs(data).cuda(),
                        # We also add measurements and commands
                        torch.squeeze(dataset.extract_commands(data).cuda()))

                elif g_conf.ENCODER_MODEL_TYPE in ['ETE']:
                    e, inter = encoder_model.forward_encoder(
                        inputs_data,
                        dataset.extract_inputs(data).cuda(),
                        torch.squeeze(dataset.extract_commands(data).cuda()))

                loss_function_params = {
                    'classification_gt':
                    dataset.extract_affordances_targets(
                        data, 'classification').cuda(),
                    # harzard stop, red_light....
                    'class_weights':
                    g_conf.AFFORDANCES_CLASS_WEIGHT,
                    'regression_gt':
                    dataset.extract_affordances_targets(data,
                                                        'regression').cuda(),
                    'variable_weights':
                    g_conf.AFFORDANCES_VARIABLE_WEIGHT
                }
                loss = model(e, loss_function_params)
                loss.backward()
                optimizer.step()

            else:
                raise RuntimeError(
                    'Not implement yet, this branch is only work for g_conf.MODEL_TYPE in [separate-affordances]'
                )
            """
                ####################################
                    Saving the model if necessary
                ####################################
            """

            if is_ready_to_save(iteration):

                state = {
                    'iteration': iteration,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'optimizer': optimizer.state_dict(),
                    'best_loss_iter': best_loss_iter
                }
                torch.save(
                    state,
                    os.path.join('_logs', g_conf.EXPERIMENT_BATCH_NAME,
                                 g_conf.EXPERIMENT_NAME, 'checkpoints',
                                 str(iteration) + '.pth'))

                if not g_conf.FREEZE_ENCODER:
                    encoder_state = {
                        'iteration': iteration,
                        'state_dict': encoder_model.state_dict(),
                        'best_loss': best_loss,
                        'total_time': accumulated_time,
                        'optimizer': optimizer.state_dict(),
                        'best_loss_iter': best_loss_iter
                    }
                    torch.save(
                        encoder_state,
                        os.path.join('_logs', g_conf.EXPERIMENT_BATCH_NAME,
                                     g_conf.EXPERIMENT_NAME, 'checkpoints',
                                     str(iteration) + '_encoder.pth'))

            iteration += 1
            """
                ################################################
                    Adding tensorboard logs.
                    Making calculations for logging purposes.
                    These logs are monitored by the printer module.
                #################################################
            """
            coil_logger.add_scalar('Loss', loss.data, iteration)
            coil_logger.add_image('Image', torch.squeeze(data['rgb']),
                                  iteration)

            if loss.data < best_loss:
                best_loss = loss.data.tolist()
                best_loss_iter = iteration

            if iteration % 100 == 0:
                print('Train Iteration: {} [{}/{} ({:.0f}%)] \t Loss: {:.6f}'.
                      format(iteration, iteration, g_conf.NUMBER_ITERATIONS,
                             100. * iteration / g_conf.NUMBER_ITERATIONS,
                             loss.data))

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except RuntimeError as e:

        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
Beispiel #3
0
def execute(gpu, exp_batch, exp_alias, suppress_output=True, number_of_workers=12):
    """
        The main training function. This functions loads the latest checkpoint
        for a given, exp_batch (folder) and exp_alias (experiment configuration).
        With this checkpoint it starts from the beginning or continue some training.
    Args:
        gpu: The GPU number
        exp_batch: the folder with the experiments
        exp_alias: the alias, experiment name
        suppress_output: if the output are going to be saved on a file
        number_of_workers: the number of threads used for data loading

    Returns:
        None

    """
    try:
        # We set the visible cuda devices to select the GPU
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu
        g_conf.VARIABLE_WEIGHT = {}
        # At this point the log file with the correct naming is created.
        # You merge the yaml file with the global configuration structure.
        merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml'))
        set_type_of_process('train')
        # Set the process into loading status.
        coil_logger.add_message('Loading', {'GPU': gpu})

        # Put the output to a separate file if it is the case

        if suppress_output:
            if not os.path.exists('_output_logs'):
                os.mkdir('_output_logs')
            sys.stdout = open(os.path.join('_output_logs', exp_alias + '_' +
                              g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a",
                              buffering=1)
            sys.stderr = open(os.path.join('_output_logs',
                              exp_alias + '_err_'+g_conf.PROCESS_NAME + '_'
                                           + str(os.getpid()) + ".out"),
                              "a", buffering=1)

        if coil_logger.check_finish('train'):
            coil_logger.add_message('Finished', {})
            return

        # Preload option
        if g_conf.PRELOAD_MODEL_ALIAS is not None:
            checkpoint = torch.load(os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH,
                                                  g_conf.PRELOAD_MODEL_ALIAS,
                                                 'checkpoints',
                                                 str(g_conf.PRELOAD_MODEL_CHECKPOINT)+'.pth'))


        # Get the latest checkpoint to be loaded
        # returns none if there are no checkpoints saved for this model
        checkpoint_file = get_latest_saved_checkpoint()
        if checkpoint_file is not None:
            checkpoint = torch.load(os.path.join('_logs', exp_batch, exp_alias,
                                    'checkpoints', str(get_latest_saved_checkpoint())))
            iteration = checkpoint['iteration']
            best_loss = checkpoint['best_loss']
            best_loss_iter = checkpoint['best_loss_iter']
        else:
            iteration = 0
            best_loss = 10000.0
            best_loss_iter = 0


        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the positions from the root directory as a in a vector.
        full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME)

        # By instantiating the augmenter we get a callable that augment images and transform them
        # into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        # Instantiate the class used to read a dataset. The coil dataset generator
        # can be found
        dataset = CoILDataset(full_dataset, transform=augmenter,
                              preload_name=str(g_conf.NUMBER_OF_HOURS)
                                               + 'hours_' + g_conf.TRAIN_DATASET_NAME)
        print ("Loaded dataset")

        data_loader = select_balancing_strategy(dataset, iteration, number_of_workers)
        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
        model.cuda()
        optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE)
        

        # Set ERFnet for segmentation
        model_erf = ERFNet(20)
        model_erf = torch.nn.DataParallel(model_erf)
        model_erf = model_erf.cuda()        
        
        print("LOAD ERFNet")
        def load_my_state_dict(model, state_dict):  #custom function to load model when not all dict elements
            own_state = model.state_dict()
            for name, param in state_dict.items():
                if name not in own_state:
                    continue
                own_state[name].copy_(param)
            return model
        
        model_erf = load_my_state_dict(model_erf, torch.load(os.path.join('trained_models/erfnet_pretrained.pth')))
        model_erf.eval()
        print ("ERFNet and weights LOADED successfully")

        if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None:
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            accumulated_time = checkpoint['total_time']
            loss_window = coil_logger.recover_loss_window('train', iteration)
        else:  # We accumulate iteration time and keep the average speed
            accumulated_time = 0
            loss_window = []
       

        print ("Before the loss")

        criterion = Loss(g_conf.LOSS_FUNCTION)

        # Loss time series window
        for data in data_loader:

            # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times,
            # add a stop on the _logs folder that is going to be read by this process
            if g_conf.FINISH_ON_VALIDATION_STALE is not None and \
                    check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE):
                break
            """
                ####################################
                    Main optimization loop
                ####################################
            """

            iteration += 1
            if iteration % 1000 == 0:
                adjust_learning_rate_auto(optimizer, loss_window)

            # get the control commands from float_data, size = [120,1]

            capture_time = time.time()
            controls = data['directions']
            # The output(branches) is a list of 5 branches results, each branch is with size [120,3]
            model.zero_grad()

            # print("Segmentation")
            # use ERFNet to convert RGB to Segmentation
            rgbs = data['rgb']
            filenames = data['rgb_name']

            # # seg one by one
            # seg_road = []
            # seg_not_road = []
            # i = 0
            # for inputs in rgbs:
            #     inputs = inputs.unsqueeze(0)
            #     # print("inputs ",inputs.shape)
            #     with torch.no_grad():
            #         outputs = model_erf(inputs)

            #     label = outputs[0].max(0)[1].byte().cpu().data

            #     road = (label == 0)
            #     not_road = (label != 0)
            #     seg_road.append(road)
            #     seg_not_road.append(not_road)   

            #     # # print("label ",label.shape)
            #     # label_color = Colorize()(label.unsqueeze(0))
            #     # filename = filenames[i]                
            #     # filenameSave = "./save_color/" + filename.split("CoILTrain/")[1]
            #     # os.makedirs(os.path.dirname(filenameSave), exist_ok=True)
                   
            #     # label_save = ToPILImage()(label_color)           
            #     # label_save.save(filenameSave) 
            #     # # print (i, filenameSave)
            #     # i += 1                 

            # seg_road = torch.stack(seg_road)
            # seg_not_road = torch.stack(seg_not_road)
            # seg = torch.stack([seg_road,seg_not_road]).transpose(0,1).float()
            # # print(seg.shape)
            
            # seg batch
            with torch.no_grad():
                outputs = model_erf(rgbs)
            # print("outputs.shape ",outputs.shape)
            labels = outputs.max(1)[1].byte().cpu().data
            # print("labels.shape",labels.shape)
            # print(np.unique(labels[0])) 

            seg_road = (labels==0)
            seg_not_road = (labels!=0)
            seg = torch.stack((seg_road,seg_not_road),1).float()

            # save 1st batch's segmentation results
            if iteration == 1:
                for i in range(120):
                    label = seg[i,0,:,:]
                    label_color = Colorize()(label.unsqueeze(0))               
                    filenameSave = "./save_color/batch_road_mask/%d.png"%(i)
                    os.makedirs(os.path.dirname(filenameSave), exist_ok=True)                   
                    label_save = ToPILImage()(label_color)           
                    label_save.save(filenameSave)

                    label = labels[i,:,:]
                    label_color = Colorize()(label.unsqueeze(0))               
                    filenameSave = "./save_color/batch_road/%d.png"%(i)
                    os.makedirs(os.path.dirname(filenameSave), exist_ok=True)                   
                    label_save = ToPILImage()(label_color)           
                    label_save.save(filenameSave)


            branches = model(torch.squeeze(seg).cuda(),
                             dataset.extract_inputs(data).cuda())
#             branches = model(torch.squeeze(rgbs.cuda()),
#                              dataset.extract_input(data).cuda())

            loss_function_params = {
                'branches': branches,
                'targets': dataset.extract_targets(data).cuda(),
                'controls': controls.cuda(),
                'inputs': dataset.extract_inputs(data).cuda(),
                'branch_weights': g_conf.BRANCH_LOSS_WEIGHT,
                'variable_weights': g_conf.VARIABLE_WEIGHT
            }
            loss, _ = criterion(loss_function_params)
            loss.backward()
            optimizer.step()
            """
                ####################################
                    Saving the model if necessary
                ####################################
            """

            if is_ready_to_save(iteration):

                state = {
                    'iteration': iteration,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'optimizer': optimizer.state_dict(),
                    'best_loss_iter': best_loss_iter
                }
                torch.save(state, os.path.join('_logs', exp_batch, exp_alias
                                               , 'checkpoints', str(iteration) + '.pth'))

            """
                ################################################
                    Adding tensorboard logs.
                    Making calculations for logging purposes.
                    These logs are monitored by the printer module.
                #################################################
            """
            coil_logger.add_scalar('Loss', loss.data, iteration)
            coil_logger.add_image('Image', torch.squeeze(data['rgb']), iteration)
            if loss.data < best_loss:
                best_loss = loss.data.tolist()
                best_loss_iter = iteration

            # Log a random position
            position = random.randint(0, len(data) - 1)

            output = model.extract_branch(torch.stack(branches[0:4]), controls)
            error = torch.abs(output - dataset.extract_targets(data).cuda())

            accumulated_time += time.time() - capture_time

            coil_logger.add_message('Iterating',
                                    {'Iteration': iteration,
                                     'Loss': loss.data.tolist(),
                                     'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                                     'BestLoss': best_loss, 'BestLossIteration': best_loss_iter,
                                     'Output': output[position].data.tolist(),
                                     'GroundTruth': dataset.extract_targets(data)[
                                         position].data.tolist(),
                                     'Error': error[position].data.tolist(),
                                     'Inputs': dataset.extract_inputs(data)[
                                         position].data.tolist()},
                                    iteration)
            loss_window.append(loss.data.tolist())
            coil_logger.write_on_error_csv('train', loss.data)
            print("Iteration: %d  Loss: %f" % (iteration, loss.data))

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except RuntimeError as e:

        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
Beispiel #4
0
def execute(gpu,
            exp_batch,
            exp_alias,
            suppress_output=True,
            number_of_workers=12):
    """
        The main training function. This functions loads the latest checkpoint
        for a given, exp_batch (folder) and exp_alias (experiment configuration).
        With this checkpoint it starts from the beginning or continue some training.
    Args:
        gpu: gpus ids for training
        exp_batch: the folder with the experiments
        exp_alias: the alias, experiment name
        suppress_output: if the output are going to be saved on a file
        number_of_workers: the number of threads used for data loading

    Returns:
        None

    """
    try:
        os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(gpu)
        g_conf.VARIABLE_WEIGHT = {}

        # At this point the log file with the correct naming is created.
        # You merge the yaml file with the global configuration structure.
        merge_with_yaml(os.path.join('configs', exp_batch,
                                     exp_alias + '.yaml'))
        set_type_of_process('train')

        # Set the process into loading status.
        coil_logger.add_message('Loading', {'GPU': gpu})

        # Put the output to a separate file if it is the case
        if suppress_output:
            if not os.path.exists('_output_logs'):
                os.mkdir('_output_logs')
            sys.stdout = open(os.path.join(
                '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' +
                str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        if coil_logger.check_finish('train'):
            coil_logger.add_message('Finished', {})
            return

        # Preload option
        if g_conf.PRELOAD_MODEL_ALIAS is not None:
            checkpoint = torch.load(
                os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH,
                             g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints',
                             str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth'))

        # Get the latest checkpoint to be loaded
        # returns none if there are no checkpoints saved for this model
        checkpoint_file = get_latest_saved_checkpoint()
        if checkpoint_file is not None:
            checkpoint = torch.load(
                os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                             str(get_latest_saved_checkpoint())))
            iteration = checkpoint['iteration']
            best_loss = checkpoint['best_loss']
            best_loss_iter = checkpoint['best_loss_iter']
            print('iteration: ', iteration, 'best_loss: ', best_loss)
        else:
            iteration = 0
            best_loss = 10000.0
            best_loss_iter = 0

        # Define the dataset. This structure is has the __get_item__ redefined in a way
        # that you can access the positions from the root directory as a in a vector.
        full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"],
                                    g_conf.TRAIN_DATASET_NAME)

        # By instantiating the augmenter we get a callable that augment images and transform them into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        # Instantiate the class used to read the dataset
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_name=str(g_conf.NUMBER_OF_HOURS) +
                              'hours_' + g_conf.TRAIN_DATASET_NAME)
        print("Loaded dataset")

        # Creates the sampler, this part is responsible for managing the keys. It divides
        # all keys depending on the measurements and produces a set of keys for each bach.
        # define the sampling strategy for mini-batch, different samplers can be found in 'splitter.py'
        data_loader = select_balancing_strategy(dataset, iteration,
                                                number_of_workers)

        # Instatiate the network architecture
        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
        model.cuda()

        optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE
                               )  # adabound and adamio can also be used here

        if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None:
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            accumulated_time = checkpoint['total_time']
            loss_window = coil_logger.recover_loss_window('train', iteration)
        else:
            # We accumulate iteration time and keep the average speed
            accumulated_time = 0
            loss_window = []

        # freeze the perception module weights if required
        # for m in model.perception.parameters():
        #     m.requires_grad = False

        # total trainable parameters
        model_parameters = filter(lambda p: p.requires_grad,
                                  model.parameters())
        total_params = sum([np.prod(p.size()) for p in model_parameters])
        print('trainable parameters: ', total_params)

        # multi-gpu
        print('number of gpus: ', torch.cuda.device_count())
        if torch.cuda.device_count() > 1:
            model = nn.DataParallel(model)

        criterion = Loss(g_conf.LOSS_FUNCTION)

        print('Start Training')

        st = time.time()
        for data in data_loader:

            # use this for early stopping if the validation loss is not coming down
            if g_conf.FINISH_ON_VALIDATION_STALE is not None and \
                    check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE):
                break
            """
                ####################################
                    Main optimization loop
                ####################################
            """

            iteration += 1

            if iteration % 1000 == 0:
                adjust_learning_rate_auto(optimizer, loss_window)

            # additional learning rate scheduler - cyclic cosine annealing (https://arxiv.org/pdf/1704.00109.pdf)
            # adjust_learning_rate_cosine_annealing(optimizer, loss_window, iteration)

            capture_time = time.time()
            controls = data['directions']
            model.zero_grad()
            branches = model(torch.squeeze(data['rgb'].cuda()),
                             dataset.extract_inputs(data).cuda())
            loss_function_params = {
                'branches': branches,
                'targets': dataset.extract_targets(data).cuda(),
                'controls': controls.cuda(),
                'inputs': dataset.extract_inputs(data).cuda(),
                'branch_weights': g_conf.BRANCH_LOSS_WEIGHT,
                'variable_weights': g_conf.VARIABLE_WEIGHT
            }
            loss, _ = criterion(loss_function_params)
            loss.backward()
            optimizer.step()
            """
                ####################################
                    Saving the model if necessary
                ####################################
            """

            if is_ready_to_save(iteration):
                if torch.cuda.device_count() > 1:
                    state_dict_save = model.module.state_dict()
                else:
                    state_dict_save = model.state_dict()

                state = {
                    'iteration': iteration,
                    'state_dict': state_dict_save,
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'optimizer': optimizer.state_dict(),
                    'best_loss_iter': best_loss_iter
                }
                torch.save(
                    state,
                    os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                                 str(iteration) + '.pth'))
            """
                ################################################
                    Adding tensorboard logs.
                    Making calculations for logging purposes.
                    These logs are monitored by the printer module.
                #################################################
            """
            coil_logger.add_scalar('Loss', loss.data, iteration)
            coil_logger.add_image('Image', torch.squeeze(data['rgb']),
                                  iteration)
            if loss.data < best_loss:
                best_loss = loss.data.tolist()
                best_loss_iter = iteration

            # Log a random position
            position = random.randint(0, len(data) - 1)

            if torch.cuda.device_count() > 1:
                output = model.module.extract_branch(
                    torch.stack(branches[0:4]), controls)
            else:
                output = model.extract_branch(torch.stack(branches[0:4]),
                                              controls)
            error = torch.abs(output - dataset.extract_targets(data).cuda())

            accumulated_time += time.time() - capture_time

            coil_logger.add_message(
                'Iterating', {
                    'Iteration':
                    iteration,
                    'Loss':
                    loss.data.tolist(),
                    'Images/s':
                    (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                    'BestLoss':
                    best_loss,
                    'BestLossIteration':
                    best_loss_iter,
                    'Output':
                    output[position].data.tolist(),
                    'GroundTruth':
                    dataset.extract_targets(data)[position].data.tolist(),
                    'Error':
                    error[position].data.tolist(),
                    'Inputs':
                    dataset.extract_inputs(data)[position].data.tolist()
                }, iteration)
            loss_window.append(loss.data.tolist())
            coil_logger.write_on_error_csv('train', loss.data)
            print("Iteration: %d  Loss: %f" % (iteration, loss.data))
            st = time.time()

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except RuntimeError as e:

        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})
Beispiel #5
0
def execute(gpu,
            exp_batch,
            exp_alias,
            suppress_output=True,
            number_of_workers=12):
    """
        The main training function. This functions loads the latest checkpoint
        for a given, exp_batch (folder) and exp_alias (experiment configuration).
        With this checkpoint it starts from the beginning or continue some training.
    Args:
        gpu: The GPU number
        exp_batch: the folder with the experiments
        exp_alias: the alias, experiment name
        suppress_output: if the output are going to be saved on a file
        number_of_workers: the number of threads used for data loading

    Returns:
        None

    """
    try:
        # We set the visible cuda devices to select the GPU
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu
        g_conf.VARIABLE_WEIGHT = {}
        # At this point the log file with the correct naming is created.
        # You merge the yaml file with the global configuration structure.
        merge_with_yaml(os.path.join('configs', exp_batch,
                                     exp_alias + '.yaml'))
        set_type_of_process('train')
        # Set the process into loading status.
        coil_logger.add_message('Loading', {'GPU': gpu})

        # Seed RNGs
        torch.manual_seed(g_conf.MAGICAL_SEED)
        random.seed(g_conf.MAGICAL_SEED)

        # Put the output to a separate file if it is the case

        if suppress_output:
            if not os.path.exists('_output_logs'):
                os.mkdir('_output_logs')
            sys.stdout = open(os.path.join(
                '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' +
                str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        if coil_logger.check_finish('train'):
            coil_logger.add_message('Finished', {})
            return

        # Preload option
        if g_conf.PRELOAD_MODEL_ALIAS is not None:
            checkpoint = torch.load(
                os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH,
                             g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints',
                             str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth'))

        # Get the latest checkpoint to be loaded
        # returns none if there are no checkpoints saved for this model
        checkpoint_file = get_latest_saved_checkpoint()
        if checkpoint_file is not None:
            checkpoint = torch.load(
                os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                             str(get_latest_saved_checkpoint())))
            iteration = checkpoint['iteration']
            best_loss = checkpoint['best_loss']
            best_loss_iter = checkpoint['best_loss_iter']
        else:
            iteration = 0
            best_loss = 10000.0
            best_loss_iter = 0

        # Define the dataset.
        # Can specify a list of training datasets or just a single training dataset
        if len(g_conf.TRAIN_DATASET_NAMES) == 0:
            train_dataset_list = [g_conf.TRAIN_DATASET_NAME]
        else:
            train_dataset_list = g_conf.TRAIN_DATASET_NAMES
        full_dataset = [
            os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name)
            for dataset_name in train_dataset_list
        ]

        # By instantiating the augmenter we get a callable that augment images and transform them
        # into tensors.
        augmenter = Augmenter(g_conf.AUGMENTATION)

        # Instantiate the class used to read a dataset. The coil dataset generator
        # can be found
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_names=[
                                  str(g_conf.NUMBER_OF_HOURS) + 'hours_' +
                                  dataset_name
                                  for dataset_name in train_dataset_list
                              ],
                              train_dataset=True)
        print("Loaded dataset")

        # Create dataloader, model, and optimizer
        data_loader = select_balancing_strategy(dataset, iteration,
                                                number_of_workers)
        model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
        model.cuda()
        optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE)

        # If we have a previous checkpoint, load model, optimizer, and record of previous
        # train loss values (used for the learning rate schedule)
        if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None:
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            accumulated_time = checkpoint['total_time']
            loss_window = coil_logger.recover_loss_window('train', iteration)
        else:  # We accumulate iteration time and keep the average speed
            accumulated_time = 0
            loss_window = []

        print("Before the loss")

        # Define control loss function
        criterion = Loss(g_conf.LOSS_FUNCTION)

        if iteration == 0 and is_ready_to_save(iteration):

            state = {
                'iteration': iteration,
                'state_dict': model.state_dict(),
                'best_loss': best_loss,
                'total_time': accumulated_time,
                'optimizer': optimizer.state_dict(),
                'best_loss_iter': best_loss_iter
            }
            torch.save(
                state,
                os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                             str(iteration) + '.pth'))
        # Training loop
        for data in data_loader:

            # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times,
            # add a stop on the _logs folder that is going to be read by this process
            if g_conf.FINISH_ON_VALIDATION_STALE is not None and \
                    check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE):
                break
            """
                ####################################
                    Main optimization loop
                ####################################
            """

            iteration += 1

            # Adjust learning rate based on training loss
            if iteration % 1000 == 0:
                adjust_learning_rate_auto(optimizer, loss_window)

            capture_time = time.time()
            model.zero_grad()

            controls = data['directions']

            # Run model forward and get outputs
            # First case corresponds to training squeeze network, second case corresponds to training driving model without
            # mimicking losses, last case corresponds to training mimic network
            if "seg" in g_conf.SENSORS.keys():
                branches = model(data,
                                 dataset.extract_inputs(data).cuda(),
                                 dataset.extract_intentions(data).cuda())
            elif not g_conf.USE_REPRESENTATION_LOSS:
                branches = model(data, dataset.extract_inputs(data).cuda())
            else:
                branches, intermediate_reps = model(
                    data,
                    dataset.extract_inputs(data).cuda())

            # Compute control loss
            targets_to_use = dataset.extract_targets(data)
            loss_function_params = {
                'branches': branches,
                'targets': targets_to_use.cuda(),
                'controls': controls.cuda(),
                'inputs': dataset.extract_inputs(data).cuda(),
                'branch_weights': g_conf.BRANCH_LOSS_WEIGHT,
                'variable_weights': g_conf.VARIABLE_WEIGHT
            }
            loss, _ = criterion(loss_function_params)

            # Compute mimicking loss
            if g_conf.USE_REPRESENTATION_LOSS:
                expert_reps = dataset.extract_representations(data)
                # Seg mask mimicking loss
                if g_conf.USE_PERCEPTION_REP_LOSS:
                    perception_rep_loss_elementwise = (
                        intermediate_reps[0] - expert_reps[0].cuda())**2
                    perception_rep_loss = g_conf.PERCEPTION_REP_WEIGHT * torch.sum(
                        perception_rep_loss_elementwise) / branches[0].shape[0]
                else:
                    perception_rep_loss = torch.tensor(0.).cuda()
                # Speed mimicking loss
                if g_conf.USE_SPEED_REP_LOSS:
                    speed_rep_loss_elementwise = (intermediate_reps[1] -
                                                  expert_reps[1].cuda())**2
                    speed_rep_loss = g_conf.SPEED_REP_WEIGHT * torch.sum(
                        speed_rep_loss_elementwise) / branches[0].shape[0]
                else:
                    speed_rep_loss = torch.tensor(0.).cuda()
                # Stop intentions mimicking loss
                if g_conf.USE_INTENTION_REP_LOSS:
                    intentions_rep_loss_elementwise = (
                        intermediate_reps[2] - expert_reps[2].cuda())**2
                    intentions_rep_loss = g_conf.INTENTIONS_REP_WEIGHT * torch.sum(
                        intentions_rep_loss_elementwise) / branches[0].shape[0]
                else:
                    intentions_rep_loss = torch.tensor(0.).cuda()
                rep_loss = g_conf.REP_LOSS_WEIGHT * (
                    perception_rep_loss + speed_rep_loss + intentions_rep_loss)
                overall_loss = loss + rep_loss
            else:
                overall_loss = loss
            overall_loss.backward()
            optimizer.step()
            """
                ####################################
                    Saving the model if necessary
                ####################################
            """

            if is_ready_to_save(iteration):

                state = {
                    'iteration': iteration,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'total_time': accumulated_time,
                    'optimizer': optimizer.state_dict(),
                    'best_loss_iter': best_loss_iter
                }
                torch.save(
                    state,
                    os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                                 str(iteration) + '.pth'))
            """
                ################################################
                    Adding tensorboard logs.
                    Making calculations for logging purposes.
                    These logs are monitored by the printer module.
                #################################################
            """
            coil_logger.add_scalar('Loss', loss.data, iteration)
            if g_conf.USE_REPRESENTATION_LOSS:
                coil_logger.add_scalar('Perception Rep Loss',
                                       perception_rep_loss.data, iteration)
                coil_logger.add_scalar('Speed Rep Loss', speed_rep_loss.data,
                                       iteration)
                coil_logger.add_scalar('Intentions Rep Loss',
                                       intentions_rep_loss.data, iteration)
                coil_logger.add_scalar('Overall Rep Loss', rep_loss.data,
                                       iteration)
                coil_logger.add_scalar('Total Loss', overall_loss.data,
                                       iteration)
            if 'rgb' in data:
                coil_logger.add_image('Image', torch.squeeze(data['rgb']),
                                      iteration)
            if overall_loss.data < best_loss:
                best_loss = overall_loss.data.tolist()
                best_loss_iter = iteration

            # Log a random position
            position = random.randint(0, len(data) - 1)

            output = model.extract_branch(torch.stack(branches[0:4]), controls)
            error = torch.abs(output - targets_to_use.cuda())

            accumulated_time += time.time() - capture_time

            # Log to terminal and log file
            if g_conf.USE_REPRESENTATION_LOSS:
                coil_logger.add_message(
                    'Iterating', {
                        'Iteration':
                        iteration,
                        'Loss':
                        overall_loss.data.tolist(),
                        'Control Loss':
                        loss.data.tolist(),
                        'Rep Loss':
                        rep_loss.data.tolist(),
                        'Images/s':
                        (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                        'BestLoss':
                        best_loss,
                        'BestLossIteration':
                        best_loss_iter,
                        'Output':
                        output[position].data.tolist(),
                        'GroundTruth':
                        targets_to_use[position].data.tolist(),
                        'Error':
                        error[position].data.tolist(),
                        'Inputs':
                        dataset.extract_inputs(data)[position].data.tolist()
                    }, iteration)
            else:
                coil_logger.add_message(
                    'Iterating', {
                        'Iteration':
                        iteration,
                        'Loss':
                        loss.data.tolist(),
                        'Images/s':
                        (iteration * g_conf.BATCH_SIZE) / accumulated_time,
                        'BestLoss':
                        best_loss,
                        'BestLossIteration':
                        best_loss_iter,
                        'Output':
                        output[position].data.tolist(),
                        'GroundTruth':
                        targets_to_use[position].data.tolist(),
                        'Error':
                        error[position].data.tolist(),
                        'Inputs':
                        dataset.extract_inputs(data)[position].data.tolist()
                    }, iteration)
            # Save training loss history (useful for restoring training runs since learning rate is adjusted
            # based on training loss)
            loss_window.append(overall_loss.data.tolist())
            coil_logger.write_on_error_csv('train', overall_loss.data)
            print("Iteration: %d  Loss: %f" % (iteration, overall_loss.data))

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except RuntimeError as e:

        coil_logger.add_message('Error', {'Message': str(e)})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something Happened'})