Beispiel #1
0
def execute(gpu, exp_batch, exp_alias, dataset_name, validation_set=False):
    latest = None
    # We set the visible cuda devices
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu
    g_conf.immutable(False)
    # At this point the log file with the correct naming is created.
    merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml'))
    # If using validation dataset, fix a very high number of hours
    if validation_set:
        g_conf.NUMBER_OF_HOURS = 10000
    g_conf.immutable(True)

    # Define the dataset.
    full_dataset = [
        os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name)
    ]
    augmenter = Augmenter(None)
    if validation_set:
        # Definition of the dataset to be used. Preload name is just the validation data name
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_names=[dataset_name])
    else:
        dataset = CoILDataset(full_dataset,
                              transform=augmenter,
                              preload_names=[
                                  str(g_conf.NUMBER_OF_HOURS) + 'hours_' +
                                  dataset_name
                              ],
                              train_dataset=True)

    # The data loader is the multi threaded module from pytorch that release a number of
    # workers to get all the data.
    data_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=g_conf.BATCH_SIZE,
        shuffle=False,
        num_workers=g_conf.NUMBER_OF_LOADING_WORKERS,
        pin_memory=True)

    # Define model
    model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION)
    """ 
        ######
        Run a single driving benchmark specified by the checkpoint were validation is stale
        ######
    """

    if g_conf.FINISH_ON_VALIDATION_STALE is not None:

        while validation_stale_point(
                g_conf.FINISH_ON_VALIDATION_STALE) is None:
            time.sleep(0.1)

        validation_state_iteration = validation_stale_point(
            g_conf.FINISH_ON_VALIDATION_STALE)

        checkpoint = torch.load(
            os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                         str(validation_state_iteration) + '.pth'))
        print("Validation loaded ", validation_state_iteration)
    else:
        """
        #####
        Main Loop , Run a benchmark for each specified checkpoint on the "Test Configuration"
        #####
        """
        while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE):
            # Get the correct checkpoint
            # We check it for some task name, all of then are ready at the same time
            if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE,
                                        control_filename + '_' + task_list[0]):

                latest = get_next_checkpoint(
                    g_conf.TEST_SCHEDULE,
                    control_filename + '_' + task_list[0])

                checkpoint = torch.load(
                    os.path.join('_logs', exp_batch, exp_alias, 'checkpoints',
                                 str(latest) + '.pth'))
                print("Validation loaded ", latest)
            else:
                time.sleep(0.1)

    # Load the model and prepare set it for evaluation
    model.load_state_dict(checkpoint['state_dict'])
    model.cuda()
    model.eval()

    first_iter = True
    for data in data_loader:

        # Compute the forward pass on a batch from the dataset and get the intermediate
        # representations of the squeeze network
        if "seg" in g_conf.SENSORS.keys():
            perception_rep, speed_rep, intentions_rep = \
                model.get_intermediate_representations(data,
                                                       dataset.extract_inputs(data).cuda(),
                                                       dataset.extract_intentions(data).cuda())
            perception_rep = perception_rep.data.cpu()
            speed_rep = speed_rep.data.cpu()
            intentions_rep = intentions_rep.data.cpu()
        if first_iter:
            perception_rep_all = perception_rep
            speed_rep_all = speed_rep
            intentions_rep_all = intentions_rep
        else:
            perception_rep_all = torch.cat(
                [perception_rep_all, perception_rep], 0)
            speed_rep_all = torch.cat([speed_rep_all, speed_rep], 0)
            intentions_rep_all = torch.cat(
                [intentions_rep_all, intentions_rep], 0)
        first_iter = False

    # Save intermediate representations
    perception_rep_all = perception_rep_all.tolist()
    speed_rep_all = speed_rep_all.tolist()
    intentions_rep_all = intentions_rep_all.tolist()
    np.save(
        os.path.join(
            '_preloads', exp_batch + '_' + exp_alias + '_' + dataset_name +
            '_representations'),
        [perception_rep_all, speed_rep_all, intentions_rep_all])
Beispiel #2
0
def execute(gpu, exp_batch, exp_alias, drive_conditions, params):
    """
    Main loop function. Executes driving benchmarks the specified iterations.
    Args:
        gpu:
        exp_batch:
        exp_alias:
        drive_conditions:
        params:

    Returns:

    """

    try:
        print("Running ", __file__, " On GPU ", gpu, "of experiment name ",
              exp_alias)
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu
        if not os.path.exists('_output_logs'):
            os.mkdir('_output_logs')

        merge_with_yaml(os.path.join('configs', exp_batch,
                                     exp_alias + '.yaml'))

        exp_set_name, town_name = drive_conditions.split('_')

        experiment_suite_module = __import__(
            'drive.suites.' + camelcase_to_snakecase(exp_set_name) + '_suite',
            fromlist=[exp_set_name])
        experiment_suite_module = getattr(experiment_suite_module,
                                          exp_set_name)

        experiment_set = experiment_suite_module()

        set_type_of_process('drive', drive_conditions)

        if params['suppress_output']:
            sys.stdout = open(os.path.join(
                '_output_logs',
                g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        coil_logger.add_message(
            'Loading', {'Poses': experiment_set.build_experiments()[0].poses})
        if g_conf.USE_ORACLE:
            control_filename = 'control_output_auto'
        else:
            control_filename = 'control_output'
        """
            #####
            Preparing the output files that will contain the driving summary
            #####
        """
        experiment_list = experiment_set.build_experiments()
        # Get all the uniquely named tasks
        task_list = unique(
            [experiment.task_name for experiment in experiment_list])
        # Now actually run the driving_benchmark

        latest = get_latest_evaluated_checkpoint(control_filename + '_' +
                                                 task_list[0])

        if latest is None:  # When nothing was tested, get latest returns none, we fix that.
            latest = 0
            # The used tasks are hardcoded, this need to be improved
            file_base = os.path.join('_logs', exp_batch, exp_alias,
                                     g_conf.PROCESS_NAME + '_csv',
                                     control_filename)

            for i in range(len(task_list)):
                # Write the header of the summary file used conclusion
                # While the checkpoint is not there
                write_header_control_summary(file_base, task_list[i])
        """ 
            ######
            Run a single driving benchmark specified by the checkpoint were validation is stale
            ######
        """

        if g_conf.FINISH_ON_VALIDATION_STALE is not None:

            while validation_stale_point(
                    g_conf.FINISH_ON_VALIDATION_STALE) is None:
                time.sleep(0.1)

            validation_state_iteration = validation_stale_point(
                g_conf.FINISH_ON_VALIDATION_STALE)
            driving_benchmark(validation_state_iteration, gpu, town_name,
                              experiment_set, exp_batch, exp_alias, params,
                              control_filename, task_list)

        else:
            """
            #####
            Main Loop , Run a benchmark for each specified checkpoint on the "Test Configuration"
            #####
            """
            while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE):
                # Get the correct checkpoint
                # We check it for some task name, all of then are ready at the same time
                if is_next_checkpoint_ready(
                        g_conf.TEST_SCHEDULE,
                        control_filename + '_' + task_list[0]):

                    latest = get_next_checkpoint(
                        g_conf.TEST_SCHEDULE,
                        control_filename + '_' + task_list[0])

                    driving_benchmark(latest, gpu, town_name, experiment_set,
                                      exp_batch, exp_alias, params,
                                      control_filename, task_list)

                else:
                    time.sleep(0.1)

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something happened'})
Beispiel #3
0
def execute(gpu: list, exp_folder: str, exp_alias: str, drive_conditions: str,
            suppress_output: bool, docker: str, record_collisions: bool,
            no_screen: bool):
    """
    Main loop function. Executes driving benchmarks the specified iterations.
    Args:
        :param gpu: list containing the gpus; will use gpu[0]
        :param exp_folder: name where trained models are stored in _logs
        :param exp_alias: name of experiment in the exp_folder
        :param drive_conditions: conditions for driving; from drive/suites:
            TestT1_Town01                   --> test_t1_suite.py
            TestT2_Town02                   --> test_t2_suite.py
            NocrashTraining_Town01          --> nocrash_training_suite.py
            NocrashNewWeatherTown_Town02    --> nocrash_new_weather_town_suite.py
            NocrashNewWeather_Town01        --> nocrash_new_weather_suite.py
            NocrashNewTown_Town02           --> nocrash_new_town_suite.py
            EccvTraining_Town01             --> eccv_training_suite.py
            EccvGeneralization_Town02       --> eccv_generalization_suite.py
            CorlTraining_Town01             --> corl_training_suite.py
            CorlNewWeatherTown_Town02       --> corl_new_weather_town_suite.py
            CorlNewWeather_Town01           --> corl_new_weather_suite.py
            CorlNewTown_Town02              --> corl_new_town_suite.py
        :param suppress_output: Save output to the '_output_logs'
        :param docker: Name of the docker image
        :param record_collisions:
        :param no_screen:
    Returns:

    """

    try:
        print(
            f"Running {__file__} on GPU {gpu[0]} of experiment name {exp_alias}"
        )
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu[0])
        if not os.path.exists('_output_logs'):
            os.mkdir('_output_logs')

        merge_with_yaml(
            os.path.join('configs', exp_folder, f'{exp_alias}.yaml'))

        # 'TestT1_Town01' -> 'TestT1', 'Town01'
        exp_set_name, town_name = drive_conditions.split('_')

        # camelcase_to_snakecase('TestT1') => test_t1 -> 'TestT1' from 'drive.suites.test_t1_suite' will be imported
        experiment_suite_module = __import__(
            f'drive.suites.{camelcase_to_snakecase(exp_set_name)}_suite',
            fromlist=[exp_set_name])
        # Load the module and an instance of it
        experiment_suite_module = getattr(experiment_suite_module,
                                          exp_set_name)
        experiment_set = experiment_suite_module()  # instance of TestT1

        set_type_of_process('drive', drive_conditions)  # drive_TestT1_Town01

        if suppress_output:
            sys.stdout = open(os.path.join(
                '_output_logs',
                g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)
            sys.stderr = open(os.path.join(
                '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME +
                '_' + str(os.getpid()) + ".out"),
                              "a",
                              buffering=1)

        coil_logger.add_message(
            'Loading', {'Poses': experiment_set.build_experiments()[0].poses})
        if g_conf.USE_ORACLE:
            control_filename = 'control_output_auto'
        else:
            control_filename = 'control_output'
        """
            #####
            Preparing the output files that will contain the driving summary
            #####
        """
        # Build experiment from the module instance
        experiment_list = experiment_set.build_experiments(
        )  # experiment has name '', but it is created
        # Get all the uniquely named tasks
        task_list = unique(
            [experiment.task_name for experiment in experiment_list])
        # Now actually run the driving_benchmark

        latest = get_latest_evaluated_checkpoint(control_filename + '_' +
                                                 task_list[0])

        if latest is None:  # When nothing was tested, get latest returns none, we fix that.
            latest = 0
            # The used tasks are hardcoded, this need to be improved
            file_base = os.path.join('_logs', exp_folder, exp_alias,
                                     f'{g_conf.PROCESS_NAME}_csv',
                                     control_filename)

            for i in range(len(task_list)):
                # Write the header of the summary file used conclusion
                # While the checkpoint is not there
                write_header_control_summary(file_base, task_list[i])
        """ 
            ######
            Run a single driving benchmark specified by the checkpoint were validation is stale
            ######
        """

        if g_conf.FINISH_ON_VALIDATION_STALE is not None:

            while validation_stale_point(
                    g_conf.FINISH_ON_VALIDATION_STALE) is None:
                time.sleep(0.1)

            validation_state_iteration = validation_stale_point(
                g_conf.FINISH_ON_VALIDATION_STALE)
            driving_benchmark(validation_state_iteration, gpu, town_name,
                              experiment_set, exp_folder, exp_alias, docker,
                              control_filename, task_list)

        else:
            """
            #####
            Main Loop , Run a benchmark for each specified checkpoint on the "Test Configuration"
            #####
            """
            while not maximum_checkpoint_reached(latest):
                # Get the correct checkpoint
                # We check it for some task name, all of then are ready at the same time
                if is_next_checkpoint_ready(
                        g_conf.TEST_SCHEDULE,
                        control_filename + '_' + task_list[0]):

                    latest = get_next_checkpoint(
                        g_conf.TEST_SCHEDULE,
                        control_filename + '_' + task_list[0])

                    driving_benchmark(latest, gpu, town_name, experiment_set,
                                      exp_folder, exp_alias, docker,
                                      control_filename, task_list)

                else:
                    time.sleep(0.1)

        coil_logger.add_message('Finished', {})

    except KeyboardInterrupt:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Killed By User'})

    except:
        traceback.print_exc()
        coil_logger.add_message('Error', {'Message': 'Something happened'})