def main(): # Qd from allan deviation sigma # WPM: sigma**2 x 1/3 # WFM: sigma**2 # FF: sigma**2 x (pi/(2 x log(2)) # Example: nr = 2**22 # generate white phase noise (WPM) X1 = cn.noiseGen(nr, 2.0e-11**2*1/3, 0) # generate white frequency noise (WFM) X2 = cn.noiseGen(nr, 3.5e-13**2, -2) # generate flicker floor noise (FF) X3 = cn.noiseGen(nr, 1.0e-16**2*(np.pi/(2*np.log(2))), -3) with open("noise.txt", 'w') as f: f.writelines( "%s\n" % item for item in X1+X2+X3)
def main(): nr = 2**14 # number of datapoints in time-series tau0=1.0 # sampling interval, sets nyquist frequency to 0.5/tau0 adev0 = 1.0e-11 # # for each noise type generated with cn.noiseGen() # compute # - phase PSD and coefficient g_b # - frequency PSD and coefficient h_a # - ADEV # - MDEV # qd0 = qd1 = qd2 = qd3 = qd4 = pow(adev0, 2) # discrete variance for noiseGen() tau0 = 1.0 # sample interval sample_rate = 1/tau0 x0 = cn.noiseGen(nr, qd0, 0) # white phase noise (WPM) x1 = cn.noiseGen(nr, qd1, -1) # flicker phase noise (FPM) x2 = cn.noiseGen(nr, qd2, -2) # white frequency noise (WFM) x3 = cn.noiseGen(nr, qd3 , -3) # flicker frequency noise (FFM) x4 = cn.noiseGen(nr, qd4 , -4) # random walk frequency noise (RWFM) # compute frequency time-series y0 = at.phase2frequency(x0, sample_rate) y1 = at.phase2frequency(x1, sample_rate) y2 = at.phase2frequency(x2, sample_rate) y3 = at.phase2frequency(x3, sample_rate) y4 = at.phase2frequency(x4, sample_rate) # compute phase PSD (f0, psd0) = at.noise.scipy_psd(x0, fs=sample_rate, nr_segments=4) (f1, psd1) = at.noise.scipy_psd(x1, fs=sample_rate, nr_segments=4) (f2, psd2) = at.noise.scipy_psd(x2, fs=sample_rate, nr_segments=4) (f3, psd3) = at.noise.scipy_psd(x3, fs=sample_rate, nr_segments=4) (f4, psd4) = at.noise.scipy_psd(x4, fs=sample_rate, nr_segments=4) # compute phase PSD prefactor g_b g0 = cn.phase_psd_from_qd( qd0, 0, tau0 ) g1 = cn.phase_psd_from_qd( qd0, -1, tau0 ) g2 = cn.phase_psd_from_qd( qd0, -2, tau0 ) g3 = cn.phase_psd_from_qd( qd0, -3, tau0 ) g4 = cn.phase_psd_from_qd( qd0, -4, tau0 ) # compute frequency PSD (ff0, fpsd0) = at.noise.scipy_psd(y0, fs=sample_rate, nr_segments=4) (ff1, fpsd1) = at.noise.scipy_psd(y1, fs=sample_rate, nr_segments=4) (ff2, fpsd2) = at.noise.scipy_psd(y2, fs=sample_rate, nr_segments=4) (ff3, fpsd3) = at.noise.scipy_psd(y3, fs=sample_rate, nr_segments=4) (ff4, fpsd4) = at.noise.scipy_psd(y4, fs=sample_rate, nr_segments=4) # compute frequency PSD prefactor h_a a0 = cn.frequency_psd_from_qd( qd0, 0, tau0 ) a1 = cn.frequency_psd_from_qd( qd1, -1, tau0 ) a2 = cn.frequency_psd_from_qd( qd2, -2, tau0 ) a3 = cn.frequency_psd_from_qd( qd3, -3, tau0 ) a4 = cn.frequency_psd_from_qd( qd4, -4, tau0 ) # compute ADEV (t0,d0,e,n) = at.oadev(x0, rate=sample_rate) (t1,d1,e,n) = at.oadev(x1, rate=sample_rate) (t2,d2,e,n) = at.oadev(x2, rate=sample_rate) (t3,d3,e,n) = at.oadev(x3, rate=sample_rate) (t4,d4,e,n) = at.oadev(x4, rate=sample_rate) # compute MDEV (mt0,md0,e,n) = at.mdev(x0, rate=sample_rate) (mt1,md1,e,n) = at.mdev(x1, rate=sample_rate) (mt2,md2,e,n) = at.mdev(x2, rate=sample_rate) (mt3,md3,e,n) = at.mdev(x3, rate=sample_rate) (mt4,md4,e,n) = at.mdev(x4, rate=sample_rate) plt.figure() # Phase PSD figure plt.subplot(2,2,1) plt.loglog(f0,[ g0*pow(xx, 0.0) for xx in f0],'--',label=r'$g_0f^0$', color='black') plt.loglog(f0,psd0,'.', color='black') plt.loglog(f1[1:],[ g1*pow(xx, -1.0) for xx in f1[1:]],'--',label=r'$g_{-1}f^{-1}$', color='red') plt.loglog(f1,psd1,'.' ,color='red') plt.loglog(f2[1:],[ g2*pow(xx,-2.0) for xx in f2[1:]],'--',label=r'$g_{-2}f^{-2}$', color='green') plt.loglog(f2,psd2,'.', color='green') plt.loglog(f3[1:], [ g3*pow(xx,-3.0) for xx in f3[1:]],'--',label=r'$g_{-3}f^{-3}$', color='pink') plt.loglog(f3, psd3, '.', color='pink') plt.loglog(f4[1:], [ g4*pow(xx,-4.0) for xx in f4[1:]],'--',label=r'$g_{-4}f^{-4}$', color='blue') plt.loglog(f4, psd4, '.', color='blue') plt.grid() plt.legend(framealpha=0.9) plt.title(r'Phase Power Spectral Density') plt.xlabel(r'Frequency (Hz)') plt.ylabel(r' $S_x(f)$ $(s^2/Hz)$') # frequency PSD figure plt.subplot(2,2,2) plt.loglog(ff0[1:], [ a0*pow(xx,2) for xx in ff0[1:]],'--',label=r'$h_{2}f^{2}$', color='black') plt.loglog(ff0,fpsd0,'.', color='black') plt.loglog(ff1[1:], [ a1*pow(xx,1) for xx in ff1[1:]],'--',label=r'$h_{1}f^{1}$', color='red') plt.loglog(ff1,fpsd1,'.', color='red') plt.loglog(ff2[1:], [ a2*pow(xx,0) for xx in ff2[1:]],'--',label=r'$h_{0}f^{0}$', color='green') plt.loglog(ff2,fpsd2,'.', color='green') plt.loglog(ff3[1:], [ a3*pow(xx,-1) for xx in ff3[1:]],'--',label=r'$h_{-1}f^{-1}$', color='pink') plt.loglog(ff3,fpsd3,'.', color='pink') plt.loglog(ff4[1:], [ a4*pow(xx,-2) for xx in ff4[1:]],'--',label=r'$h_{-2}f^{-2}$', color='blue') plt.loglog(ff4,fpsd4,'.', color='blue') plt.grid() plt.legend(framealpha=0.9) plt.title(r'Frequency Power Spectral Density') plt.xlabel(r'Frequency (Hz)') plt.ylabel(r' $S_y(f)$ $(1/Hz)$') # ADEV figure plt.subplot(2,2,3) plt.loglog(t0, [ cn.adev_from_qd(qd0, 0, tau0)/xx for xx in t0],'--', label=r'$\sqrt{Eh_{2}}\tau^{-1}$', color='black') plt.loglog(t0,d0,'o', color='black') plt.loglog(t1, [ cn.adev_from_qd(qd1, -1, tau0)/xx for xx in t1],'--', label=r'$\sqrt{Dh_{1}}\tau^{-1}$', color='red') plt.loglog(t1,d1,'o', color='red') plt.loglog(t2, [ cn.adev_from_qd(qd2, -2, tau0)/math.sqrt(xx) for xx in t2],'--', label=r'$\sqrt{Ch_{0}}\tau^{-1/2}$', color='green') plt.loglog(t2,d2,'o', color='green') plt.loglog(t3, [ cn.adev_from_qd(qd3, -3, tau0)*1 for xx in t3],'--', label=r'$\sqrt{Bh_{-1}}\tau^0$', color='pink') plt.loglog(t3,d3,'o', color='pink') plt.loglog(t4, [ cn.adev_from_qd(qd4, -4, tau0)*math.sqrt(xx) for xx in t4],'--', label=r'$\sqrt{Ah_{-2}}\tau^{+1/2}$', color='blue') plt.loglog(t4,d4,'o', color='blue') plt.legend(framealpha=0.9, loc='lower left') plt.grid() plt.title(r'Allan Deviation') plt.xlabel(r'$\tau$ (s)') plt.ylabel(r'ADEV') # MDEV plt.subplot(2, 2, 4) plt.loglog(t0, [ cn.adev_from_qd(qd0, 0, tau0)/pow(xx,3.0/2.0) for xx in t0],'--', label=r'$\sqrt{Eh_{2}}\tau^{-3/2}$', color='black') plt.loglog(mt0,md0,'o', color='black') plt.loglog(t1, [ cn.adev_from_qd(qd1, -1, tau0)/xx for xx in t1],'--', label=r'$\sqrt{Dh_{1}}\tau^{-1}$', color='red') plt.loglog(mt1,md1,'o', color='red') plt.loglog(t2, [ cn.adev_from_qd(qd2, -2, tau0)/math.sqrt(xx) for xx in t2],'--', label=r'$\sqrt{Ch_{0}}\tau^{-1/2}$', color='green') plt.loglog(mt2,md2,'o', color='green') plt.loglog(t3, [ cn.adev_from_qd(qd3, -3, tau0)**1 for xx in t3],'--', label=r'$\sqrt{Bh_{-1}}\tau^0$', color='pink') plt.loglog(mt3,md3,'o', color='pink') plt.loglog(t4, [ cn.adev_from_qd(qd4, -4, tau0)*math.sqrt(xx) for xx in t4],'--', label=r'$\sqrt{Ah_{-2}}\tau^{+1/2}$', color='blue') plt.loglog(mt4,md4,'o', color='blue') plt.legend(framealpha=0.9, loc='lower left') plt.grid() plt.title(r'Modified Allan Deviation') plt.xlabel(r'$\tau$ (s)') plt.ylabel(r'MDEV') plt.show()
def main(): nr = 2**14 # number of datapoints in time-series adev0 = 1.0e-11 # # for each noise type generated with cn.noiseGen() # compute # - phase PSD and coefficient g_b # - frequency PSD and coefficient h_a # - ADEV # - MDEV # qd0 = qd1 = qd2 = qd3 = qd4 = pow(adev0, 2) # discrete variance for noiseGen() tau0 = 1.0 # sample interval sample_rate = 1.0/tau0 x0 = cn.noiseGen(nr, qd0, 0) # white phase noise (WPM) x1 = cn.noiseGen(nr, qd1, -1) # flicker phase noise (FPM) x2 = cn.noiseGen(nr, qd2, -2) # white frequency noise (WFM) x3 = cn.noiseGen(nr, qd3 , -3) # flicker frequency noise (FFM) x4 = cn.noiseGen(nr, qd4 , -4) # random walk frequency noise (RWFM) # compute frequency time-series y0 = at.phase2frequency(x0, sample_rate) y1 = at.phase2frequency(x1, sample_rate) y2 = at.phase2frequency(x2, sample_rate) y3 = at.phase2frequency(x3, sample_rate) y4 = at.phase2frequency(x4, sample_rate) # compute phase PSD (f0, psd0) = at.noise.scipy_psd(x0, f_sample=sample_rate, nr_segments=4) (f1, psd1) = at.noise.scipy_psd(x1, f_sample=sample_rate, nr_segments=4) (f2, psd2) = at.noise.scipy_psd(x2, f_sample=sample_rate, nr_segments=4) (f3, psd3) = at.noise.scipy_psd(x3, f_sample=sample_rate, nr_segments=4) (f4, psd4) = at.noise.scipy_psd(x4, f_sample=sample_rate, nr_segments=4) # compute phase PSD prefactor g_b g0 = cn.phase_psd_from_qd( qd0, 0, tau0 ) g1 = cn.phase_psd_from_qd( qd0, -1, tau0 ) g2 = cn.phase_psd_from_qd( qd0, -2, tau0 ) g3 = cn.phase_psd_from_qd( qd0, -3, tau0 ) g4 = cn.phase_psd_from_qd( qd0, -4, tau0 ) # compute frequency PSD (ff0, fpsd0) = at.noise.scipy_psd(y0, f_sample=sample_rate, nr_segments=4) (ff1, fpsd1) = at.noise.scipy_psd(y1, f_sample=sample_rate, nr_segments=4) (ff2, fpsd2) = at.noise.scipy_psd(y2, f_sample=sample_rate, nr_segments=4) (ff3, fpsd3) = at.noise.scipy_psd(y3, f_sample=sample_rate, nr_segments=4) (ff4, fpsd4) = at.noise.scipy_psd(y4, f_sample=sample_rate, nr_segments=4) # compute frequency PSD prefactor h_a a0 = cn.frequency_psd_from_qd( qd0, 0, tau0 ) a1 = cn.frequency_psd_from_qd( qd1, -1, tau0 ) a2 = cn.frequency_psd_from_qd( qd2, -2, tau0 ) a3 = cn.frequency_psd_from_qd( qd3, -3, tau0 ) a4 = cn.frequency_psd_from_qd( qd4, -4, tau0 ) # compute ADEV (t0,d0,e,n) = at.oadev(x0, rate=sample_rate) (t1,d1,e,n) = at.oadev(x1, rate=sample_rate) (t2,d2,e,n) = at.oadev(x2, rate=sample_rate) (t3,d3,e,n) = at.oadev(x3, rate=sample_rate) (t4,d4,e,n) = at.oadev(x4, rate=sample_rate) # compute MDEV (mt0,md0,e,n) = at.mdev(x0, rate=sample_rate) (mt1,md1,e,n) = at.mdev(x1, rate=sample_rate) (mt2,md2,e,n) = at.mdev(x2, rate=sample_rate) (mt3,md3,e,n) = at.mdev(x3, rate=sample_rate) (mt4,md4,e,n) = at.mdev(x4, rate=sample_rate) plt.figure() # Phase PSD figure plt.subplot(2,2,1) plt.loglog(f0,[ g0*pow(xx, 0.0) for xx in f0],'--',label=r'$g_0f^0$', color='black') plt.loglog(f0,psd0,'.', color='black') plt.loglog(f1[1:],[ g1*pow(xx, -1.0) for xx in f1[1:]],'--',label=r'$g_{-1}f^{-1}$', color='red') plt.loglog(f1,psd1,'.' ,color='red') plt.loglog(f2[1:],[ g2*pow(xx,-2.0) for xx in f2[1:]],'--',label=r'$g_{-2}f^{-2}$', color='green') plt.loglog(f2,psd2,'.', color='green') plt.loglog(f3[1:], [ g3*pow(xx,-3.0) for xx in f3[1:]],'--',label=r'$g_{-3}f^{-3}$', color='pink') plt.loglog(f3, psd3, '.', color='pink') plt.loglog(f4[1:], [ g4*pow(xx,-4.0) for xx in f4[1:]],'--',label=r'$g_{-4}f^{-4}$', color='blue') plt.loglog(f4, psd4, '.', color='blue') plt.grid() plt.legend(framealpha=0.9) plt.title(r'Phase Power Spectral Density') plt.xlabel(r'Frequency (Hz)') plt.ylabel(r' $S_x(f)$ $(s^2/Hz)$') # frequency PSD figure plt.subplot(2,2,2) plt.loglog(ff0[1:], [ a0*pow(xx,2) for xx in ff0[1:]],'--',label=r'$h_{2}f^{2}$', color='black') plt.loglog(ff0,fpsd0,'.', color='black') plt.loglog(ff1[1:], [ a1*pow(xx,1) for xx in ff1[1:]],'--',label=r'$h_{1}f^{1}$', color='red') plt.loglog(ff1,fpsd1,'.', color='red') plt.loglog(ff2[1:], [ a2*pow(xx,0) for xx in ff2[1:]],'--',label=r'$h_{0}f^{0}$', color='green') plt.loglog(ff2,fpsd2,'.', color='green') plt.loglog(ff3[1:], [ a3*pow(xx,-1) for xx in ff3[1:]],'--',label=r'$h_{-1}f^{-1}$', color='pink') plt.loglog(ff3,fpsd3,'.', color='pink') plt.loglog(ff4[1:], [ a4*pow(xx,-2) for xx in ff4[1:]],'--',label=r'$h_{-2}f^{-2}$', color='blue') plt.loglog(ff4,fpsd4,'.', color='blue') plt.grid() plt.legend(framealpha=0.9) plt.title(r'Frequency Power Spectral Density') plt.xlabel(r'Frequency (Hz)') plt.ylabel(r' $S_y(f)$ $(1/Hz)$') # ADEV figure plt.subplot(2,2,3) plt.loglog(t0, [ cn.adev_from_qd(qd0, 0, tau0, xx)/xx for xx in t0],'--', label=r'$\propto\sqrt{h_{2}}\tau^{-1}$', color='black') plt.loglog(t0,d0,'o', color='black') plt.loglog(t1, [ cn.adev_from_qd(qd1, -1, tau0, xx)/xx for xx in t1],'--', label=r'$\propto\sqrt{h_{1}}\tau^{-1}$', color='red') plt.loglog(t1,d1,'o', color='red') plt.loglog(t2, [ cn.adev_from_qd(qd2, -2, tau0, xx)/math.sqrt(xx) for xx in t2],'--', label=r'$\propto\sqrt{h_{0}}\tau^{-1/2}$', color='green') plt.loglog(t2,d2,'o', color='green') plt.loglog(t3, [ cn.adev_from_qd(qd3, -3, tau0, xx)*1 for xx in t3],'--', label=r'$\propto\sqrt{h_{-1}}\tau^0$', color='pink') plt.loglog(t3,d3,'o', color='pink') plt.loglog(t4, [ cn.adev_from_qd(qd4, -4, tau0, xx)*math.sqrt(xx) for xx in t4],'--', label=r'$\propto\sqrt{h_{-2}}\tau^{+1/2}$', color='blue') plt.loglog(t4,d4,'o', color='blue') plt.legend(framealpha=0.9, loc='lower left') plt.grid() plt.title(r'Allan Deviation') plt.xlabel(r'$\tau$ (s)') plt.ylabel(r'ADEV') # MDEV plt.subplot(2, 2, 4) plt.loglog(t0, [ cn.mdev_from_qd(qd0, 0, tau0, xx)/pow(xx,3.0/2.0) for xx in t0],'--', label=r'$\propto\sqrt{h_{2}}\tau^{-3/2}$', color='black') plt.loglog(mt0,md0,'o', color='black') plt.loglog(t1, [ cn.mdev_from_qd(qd1, -1, tau0, xx)/xx for xx in t1],'--', label=r'$\propto\sqrt{h_{1}}\tau^{-1}$', color='red') plt.loglog(mt1,md1,'o', color='red') plt.loglog(t2, [ cn.mdev_from_qd(qd2, -2, tau0, xx)/math.sqrt(xx) for xx in t2],'--', label=r'$\propto\sqrt{h_{0}}\tau^{-1/2}$', color='green') plt.loglog(mt2,md2,'o', color='green') plt.loglog(t3, [ cn.mdev_from_qd(qd3, -3, tau0, xx)**1 for xx in t3],'--', label=r'$\propto\sqrt{h_{-1}}\tau^0$', color='pink') plt.loglog(mt3,md3,'o', color='pink') plt.loglog(t4, [ cn.mdev_from_qd(qd4, -4, tau0, xx)*math.sqrt(xx) for xx in t4],'--', label=r'$\propto\sqrt{h_{-2}}\tau^{+1/2}$', color='blue') plt.loglog(mt4,md4,'o', color='blue') plt.legend(framealpha=0.9, loc='lower left') plt.grid() plt.title(r'Modified Allan Deviation') plt.xlabel(r'$\tau$ (s)') plt.ylabel(r'MDEV') plt.show()
def main(): nr = 2**14 # number of datapoints in time-series adev0 = 1.0e-11 # # for each noise type generated with cn.noiseGen() # compute # - phase PSD and coefficient g_b # - frequency PSD and coefficient h_a # - ADEV # - MDEV # tau0 = 0.1 # sample interval for simulated time-series sample_rate = 1.0 / tau0 qd0 = qd1 = qd2 = qd3 = qd4 = pow(adev0, 2) # discrete variance for noiseGen() # This scaling makes all g_i coefficients equal # -> PSDs cross at 1 Hz. qd1 = qd0 * 2 * np.pi / sample_rate qd2 = qd1 * 2 * np.pi / sample_rate qd3 = qd2 * 2 * np.pi / sample_rate qd4 = qd3 * 2 * np.pi / sample_rate print("generating timeseries..."), x0 = cn.noiseGen(nr, qd0, 0) # white phase noise (WPM) x1 = cn.noiseGen(nr, qd1, -1) # flicker phase noise (FPM) x2 = cn.noiseGen(nr, qd2, -2) # white frequency noise (WFM) x3 = cn.noiseGen(nr, qd3, -3) # flicker frequency noise (FFM) x4 = cn.noiseGen(nr, qd4, -4) # random walk frequency noise (RWFM) # compute frequency time-series y0 = at.phase2frequency(x0, sample_rate) y1 = at.phase2frequency(x1, sample_rate) y2 = at.phase2frequency(x2, sample_rate) y3 = at.phase2frequency(x3, sample_rate) y4 = at.phase2frequency(x4, sample_rate) print("done.") print("computing PSDs..."), # compute phase PSD (f0, psd0) = at.noise.scipy_psd(x0, f_sample=sample_rate, nr_segments=4) (f1, psd1) = at.noise.scipy_psd(x1, f_sample=sample_rate, nr_segments=4) (f2, psd2) = at.noise.scipy_psd(x2, f_sample=sample_rate, nr_segments=4) (f3, psd3) = at.noise.scipy_psd(x3, f_sample=sample_rate, nr_segments=4) (f4, psd4) = at.noise.scipy_psd(x4, f_sample=sample_rate, nr_segments=4) # compute phase PSD prefactor g_b g0 = cn.phase_psd_from_qd(qd0, 0, tau0) g1 = cn.phase_psd_from_qd(qd1, -1, tau0) g2 = cn.phase_psd_from_qd(qd2, -2, tau0) g3 = cn.phase_psd_from_qd(qd3, -3, tau0) g4 = cn.phase_psd_from_qd(qd4, -4, tau0) print g0 print g1 print g2 print g3 print g4 # compute frequency PSD (ff0, fpsd0) = at.noise.scipy_psd(y0, f_sample=sample_rate, nr_segments=4) (ff1, fpsd1) = at.noise.scipy_psd(y1, f_sample=sample_rate, nr_segments=4) (ff2, fpsd2) = at.noise.scipy_psd(y2, f_sample=sample_rate, nr_segments=4) (ff3, fpsd3) = at.noise.scipy_psd(y3, f_sample=sample_rate, nr_segments=4) (ff4, fpsd4) = at.noise.scipy_psd(y4, f_sample=sample_rate, nr_segments=4) # compute frequency PSD prefactor h_a a0 = cn.frequency_psd_from_qd(qd0, 0, tau0) a1 = cn.frequency_psd_from_qd(qd1, -1, tau0) a2 = cn.frequency_psd_from_qd(qd2, -2, tau0) a3 = cn.frequency_psd_from_qd(qd3, -3, tau0) a4 = cn.frequency_psd_from_qd(qd4, -4, tau0) print "a_i == g_i*(4pi^2)" print a0, g0 * pow(2 * np.pi, 2) print a1, g1 * pow(2 * np.pi, 2) print a2, g2 * pow(2 * np.pi, 2) print a3, g3 * pow(2 * np.pi, 2) print a4, g4 * pow(2 * np.pi, 2) print("done.") print("computing ADEV/MDEV..."), # compute ADEV (t0, d0, e, n) = at.oadev(x0, rate=sample_rate) (t1, d1, e, n) = at.oadev(x1, rate=sample_rate) (t2, d2, e, n) = at.oadev(x2, rate=sample_rate) (t3, d3, e, n) = at.oadev(x3, rate=sample_rate) (t4, d4, e, n) = at.oadev(x4, rate=sample_rate) # compute MDEV (mt0, md0, e, n) = at.mdev(x0, rate=sample_rate) (mt1, md1, e, n) = at.mdev(x1, rate=sample_rate) (mt2, md2, e, n) = at.mdev(x2, rate=sample_rate) (mt3, md3, e, n) = at.mdev(x3, rate=sample_rate) (mt4, md4, e, n) = at.mdev(x4, rate=sample_rate) print("done.") plt.figure() # Phase PSD figure plt.subplot(2, 2, 1) plt.loglog(f0, [g0 * pow(xx, 0.0) for xx in f0], '--', label=r'$g_0f^0 = {h_2\over4\pi^2}f^0$', color='black') plt.loglog(f0, psd0, '.', color='black') plt.loglog(f1[1:], [g1 * pow(xx, -1.0) for xx in f1[1:]], '--', label=r'$g_{-1}f^{-1} = {h_1\over4\pi^2}f^{-1} $', color='red') plt.loglog(f1, psd1, '.', color='red') plt.loglog(f2[1:], [g2 * pow(xx, -2.0) for xx in f2[1:]], '--', label=r'$g_{-2}f^{-2} = {h_0\over4\pi^2}f^{-2} $', color='green') plt.loglog(f2, psd2, '.', color='green') plt.loglog(f3[1:], [g3 * pow(xx, -3.0) for xx in f3[1:]], '--', label=r'$g_{-3}f^{-3} = {h_{-1}\over4\pi^2}f^{-3} $', color='pink') plt.loglog(f3, psd3, '.', color='pink') plt.loglog(f4[1:], [g4 * pow(xx, -4.0) for xx in f4[1:]], '--', label=r'$g_{-4}f^{-4} = {h_{-2}\over4\pi^2}f^{-4}$', color='blue') plt.loglog(f4, psd4, '.', color='blue') plt.grid() plt.legend(framealpha=0.9, fontsize=22) plt.title(r'Phase Power Spectral Density') plt.xlabel(r'Frequency (Hz)') plt.ylabel(r' $S_x(f)$ $(s^2/Hz)$') # frequency PSD figure plt.subplot(2, 2, 2) plt.loglog(ff0[1:], [a0 * pow(xx, 2) for xx in ff0[1:]], '--', label=r'$h_{2}f^{2}$', color='black') plt.loglog(ff0, fpsd0, '.', color='black') plt.loglog(ff1[1:], [a1 * pow(xx, 1) for xx in ff1[1:]], '--', label=r'$h_{1}f^{1}$', color='red') plt.loglog(ff1, fpsd1, '.', color='red') plt.loglog(ff2[1:], [a2 * pow(xx, 0) for xx in ff2[1:]], '--', label=r'$h_{0}f^{0}$', color='green') plt.loglog(ff2, fpsd2, '.', color='green') plt.loglog(ff3[1:], [a3 * pow(xx, -1) for xx in ff3[1:]], '--', label=r'$h_{-1}f^{-1}$', color='pink') plt.loglog(ff3, fpsd3, '.', color='pink') plt.loglog(ff4[1:], [a4 * pow(xx, -2) for xx in ff4[1:]], '--', label=r'$h_{-2}f^{-2}$', color='blue') plt.loglog(ff4, fpsd4, '.', color='blue') plt.grid() plt.legend(framealpha=0.9, fontsize=22) plt.title(r'Frequency Power Spectral Density') plt.xlabel(r'Frequency (Hz)') plt.ylabel(r' $S_y(f)$ $(1/Hz)$') # ADEV figure plt.subplot(2, 2, 3) f_h = 0.5 / tau0 K0 = 3.0 * f_h / (4.0 * pow(np.pi, 2)) plt.loglog(t0, [np.sqrt(K0 * a0) / xx for xx in t0], '--', label=r'$\sqrt{3f_H\over4\pi^2} \sqrt{h_{2}}\tau^{-3/2}$', color='black') plt.loglog(t0, d0, 'o', color='black') # IEEE 1139-2008, table B.2 def K1(f_H, tau): gamma = 1.038 / 2 return ((3.0 / 2.0) * np.log(2.0 * np.pi * f_h * tau) + gamma) / (2.0 * pow(np.pi, 2)) plt.loglog( t1, [np.sqrt(K1(f_h, xx) * a1) / xx for xx in t1], '--', label= r'$\sqrt{ 3\ln{(2 \pi f_H \tau)} + \gamma \over 4\pi^2 }\sqrt{h_{1}}\tau^{-1}$', color='red') plt.loglog(t1, d1, 'o', color='red') K2 = 0.5 plt.loglog(t2, [np.sqrt(K2 * a2) / math.sqrt(xx) for xx in t2], '--', label=r'$\sqrt{1\over2} \sqrt{h_{0}}\tau^{-1/2}$', color='green') plt.loglog(t2, d2, 'o', color='green') K3 = 2 * np.log(2) plt.loglog(t3, [np.sqrt(K3 * a3) for xx in t3], '--', label=r'$ \sqrt{2\ln{2}}\sqrt{h_{-1}}\tau^0$', color='pink') plt.loglog(t3, d3, 'o', color='pink') K4 = (2 * np.pi**2.0) / 3.0 plt.loglog(t4, [np.sqrt(K4 * a4) * math.sqrt(xx) for xx in t4], '--', label=r'$\sqrt{2\pi^2\over3}\sqrt{h_{-2}}\tau^{+1/2}$', color='blue') plt.loglog(t4, d4, 'o', color='blue') plt.legend(framealpha=0.9, loc='lower left', fontsize=22) plt.grid() plt.title(r'Allan Deviation') plt.xlabel(r'$\tau$ (s)') plt.ylabel(r'ADEV') # MDEV plt.subplot(2, 2, 4) M0 = 3.0 / (8.0 * pow(np.pi, 2)) plt.loglog(t0, [np.sqrt(M0 * a0) / pow(xx, 3.0 / 2.0) for xx in t0], '--', label=r'$\sqrt{ 3\over 8\pi^2 } \sqrt{h_{2}}\tau^{-3/2}$', color='black') plt.loglog(mt0, md0, 'o', color='black') M1 = (24.0 * np.log(2) - 9.0 * np.log(3)) / (8.0 * pow(np.pi, 2)) plt.loglog( t1, [np.sqrt(M1 * a1) / xx for xx in t1], '--', label=r'$\sqrt{ 24\ln(2)-9\ln(3) \over 8\pi^2 } \sqrt{h_{1}}\tau^{-1}$', color='red') plt.loglog(mt1, md1, 'o', color='red') M2 = 0.25 plt.loglog(t2, [np.sqrt(M2 * a2) / math.sqrt(xx) for xx in t2], '--', label=r'$ \sqrt{1\over4}\sqrt{h_{0}}\tau^{-1/2}$', color='green') plt.loglog(mt2, md2, 'o', color='green') M3 = 27.0 / 20.0 * np.log(2) plt.loglog(t3, [np.sqrt(M3 * a3) for xx in t3], '--', label=r'$\sqrt{ {27\over20}\ln(2) } \sqrt{h_{-1}}\tau^0$', color='pink') plt.loglog(mt3, md3, 'o', color='pink') M4 = 11.0 / 20.0 * pow(np.pi, 2) plt.loglog(t4, [np.sqrt(M4 * a4) * math.sqrt(xx) for xx in t4], '--', label=r'$ \sqrt{ {11\over20}\pi^2 } \sqrt{h_{-2}}\tau^{+1/2}$', color='blue') plt.loglog(mt4, md4, 'o', color='blue') plt.legend(framealpha=0.9, loc='lower left', fontsize=22) plt.grid() plt.title(r'Modified Allan Deviation') plt.xlabel(r'$\tau$ (s)') plt.ylabel(r'MDEV') plt.show()