Beispiel #1
0
def plot_cvd_simulation_Machado2009(RGB,
                                    deficiency='Protanomaly',
                                    severity=0.5,
                                    M_a=None,
                                    **kwargs):
    """
    Performs colour vision deficiency simulation on given *RGB* colourspace
    array using *Machado et al. (2009)* model.

    Parameters
    ----------
    RGB : array_like
        *RGB* colourspace array.
    deficiency : unicode, optional
        {'Protanomaly', 'Deuteranomaly', 'Tritanomaly'}
        Colour blindness / vision deficiency type.
    severity : numeric, optional
        Severity of the colour vision deficiency in domain [0, 1].
    M_a : array_like, optional
        Anomalous trichromacy matrix to use instead of Machado (2010)
        pre-computed matrix.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.plot_image`,
        :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Notes
    -----
    -  Input *RGB* array is expected to be linearly encoded.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> import numpy as np
    >>> RGB = np.random.rand(32, 32, 3)
    >>> plot_cvd_simulation_Machado2009(RGB)  # doctest: +SKIP

    .. image:: ../_static/Plotting_Plot_CVD_Simulation_Machado2009.png
        :align: center
        :alt: plot_cvd_simulation_Machado2009
    """

    if M_a is None:
        M_a = cvd_matrix_Machado2009(deficiency, severity)

    text = 'Deficiency: {0} - Severity: {1}'.format(deficiency, severity)

    settings = {'text_parameters': {'text': None if M_a is None else text}}
    settings.update(kwargs)

    return plot_image(
        COLOUR_STYLE_CONSTANTS.colour.colourspace.encoding_cctf(
            dot_vector(M_a, RGB)), **settings)
Beispiel #2
0
def plot_cvd_simulation_Machado2009(RGB,
                                    deficiency='Protanomaly',
                                    severity=0.5,
                                    M_a=None,
                                    **kwargs):
    """
    Performs colour vision deficiency simulation on given *RGB* colourspace
    array using *Machado et al. (2009)* model.

    Parameters
    ----------
    RGB : array_like
        *RGB* colourspace array.
    deficiency : unicode, optional
        {'Protanomaly', 'Deuteranomaly', 'Tritanomaly'}
        Colour blindness / vision deficiency type.
    severity : numeric, optional
        Severity of the colour vision deficiency in domain [0, 1].
    M_a : array_like, optional
        Anomalous trichromacy matrix to use instead of Machado (2010)
        pre-computed matrix.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.plot_image`,
        :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Notes
    -----
    -  Input *RGB* array is expected to be linearly encoded.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> import numpy as np
    >>> RGB = np.random.rand(32, 32, 3)
    >>> plot_cvd_simulation_Machado2009(RGB)  # doctest: +SKIP

    .. image:: ../_static/Plotting_Plot_CVD_Simulation_Machado2009.png
        :align: center
        :alt: plot_cvd_simulation_Machado2009
    """

    if M_a is None:
        M_a = cvd_matrix_Machado2009(deficiency, severity)

    text = 'Deficiency: {0} - Severity: {1}'.format(deficiency, severity)

    settings = {'text_parameters': {'text': None if M_a is None else text}}
    settings.update(kwargs)

    return plot_image(
        COLOUR_STYLE_CONSTANTS.colour.colourspace.encoding_cctf(
            dot_vector(M_a, RGB)), **settings)
Beispiel #3
0
    def test_plot_image(self):
        """Test :func:`colour.plotting.common.plot_image` definition."""

        path = os.path.join(colour.__path__[0], "..", "docs", "_static",
                            "Logo_Medium_001.png")

        # Distribution does not ship the documentation thus we are skipping
        # this unit test if the image does not exist.
        if not os.path.exists(path):  # pragma: no cover
            return

        figure, axes = plot_image(read_image(path))

        self.assertIsInstance(figure, Figure)
        self.assertIsInstance(axes, Axes)
Beispiel #4
0
from colour.utilities.verbose import message_box

RESOURCES_DIRECTORY = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                   'resources')

colour_style()

ISHIHARA_CBT_3_IMAGE = colour.oetf_reverse(colour.read_image(
    os.path.join(RESOURCES_DIRECTORY,
                 'Ishihara_Colour_Blindness_Test_Plate_3.png')),
                                           function='sRGB')

message_box('Colour Blindness Plots')

message_box('Displaying "Ishihara Colour Blindness Test - Plate 3".')
plot_image(ISHIHARA_CBT_3_IMAGE, 'Normal Trichromat', label_colour='black')

print('\n')

message_box('Simulating average "Protanomaly" on '
            '"Ishihara Colour Blindness Test - Plate 3" with Machado (2010) '
            'model and pre-computed matrix.')
plot_cvd_simulation_Machado2009(ISHIHARA_CBT_3_IMAGE,
                                'Protanomaly',
                                0.5,
                                label_colour='black')

print('\n')

M_a = colour.anomalous_trichromacy_matrix_Machado2009(
    colour.LMS_CMFS.get('Stockman & Sharpe 2 Degree Cone Fundamentals'),
Beispiel #5
0
def generate_documentation_plots(output_directory):
    """
    Generates documentation plots.

    Parameters
    ----------
    output_directory : unicode
        Output directory.
    """

    filter_warnings()

    colour_style()

    np.random.seed(0)

    # *************************************************************************
    # "README.rst"
    # *************************************************************************
    filename = os.path.join(output_directory,
                            'Examples_Colour_Automatic_Conversion_Graph.png')
    plot_automatic_colour_conversion_graph(filename)

    arguments = {
        'tight_layout':
        True,
        'transparent_background':
        True,
        'filename':
        os.path.join(output_directory,
                     'Examples_Plotting_Visible_Spectrum.png')
    }
    plt.close(
        plot_visible_spectrum('CIE 1931 2 Degree Standard Observer',
                              **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Examples_Plotting_Illuminant_F1_SD.png')
    plt.close(plot_single_illuminant_sd('FL1', **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Examples_Plotting_Blackbodies.png')
    blackbody_sds = [
        sd_blackbody(i, SpectralShape(0, 10000, 10))
        for i in range(1000, 15000, 1000)
    ]
    plt.close(
        plot_multi_sds(blackbody_sds,
                       y_label='W / (sr m$^2$) / m',
                       use_sds_colours=True,
                       normalise_sds_colours=True,
                       legend_location='upper right',
                       bounding_box=(0, 1250, 0, 2.5e15),
                       **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Examples_Plotting_Cone_Fundamentals.png')
    plt.close(
        plot_single_cmfs('Stockman & Sharpe 2 Degree Cone Fundamentals',
                         y_label='Sensitivity',
                         bounding_box=(390, 870, 0, 1.1),
                         **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Examples_Plotting_Luminous_Efficiency.png')
    plt.close(
        plot_multi_sds((sd_mesopic_luminous_efficiency_function(0.2),
                        PHOTOPIC_LEFS['CIE 1924 Photopic Standard Observer'],
                        SCOTOPIC_LEFS['CIE 1951 Scotopic Standard Observer']),
                       y_label='Luminous Efficiency',
                       legend_location='upper right',
                       y_tighten=True,
                       margins=(0, 0, 0, .1),
                       **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Examples_Plotting_BabelColor_Average.png')
    plt.close(
        plot_multi_sds(COLOURCHECKERS_SDS['BabelColor Average'].values(),
                       use_sds_colours=True,
                       title=('BabelColor Average - '
                              'Spectral Distributions'),
                       **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Examples_Plotting_ColorChecker_2005.png')
    plt.close(
        plot_single_colour_checker('ColorChecker 2005',
                                   text_parameters={'visible': False},
                                   **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Examples_Plotting_Chromaticities_Prediction.png')
    plt.close(
        plot_corresponding_chromaticities_prediction(2, 'Von Kries', 'Bianco',
                                                     **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Examples_Plotting_CCT_CIE_1960_UCS_Chromaticity_Diagram.png')
    plt.close(
        plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS(
            ['A', 'B', 'C'], **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Examples_Plotting_Chromaticities_CIE_1931_Chromaticity_Diagram.png')
    RGB = np.random.random((32, 32, 3))
    plt.close(
        plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931(
            RGB,
            'ITU-R BT.709',
            colourspaces=['ACEScg', 'S-Gamut'],
            show_pointer_gamut=True,
            **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Examples_Plotting_CRI.png')
    plt.close(
        plot_single_sd_colour_rendering_index_bars(ILLUMINANTS_SDS['FL2'],
                                                   **arguments)[0])

    # *************************************************************************
    # Documentation
    # *************************************************************************
    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_CVD_Simulation_Machado2009.png')
    plt.close(plot_cvd_simulation_Machado2009(RGB, **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Single_Colour_Checker.png')
    plt.close(plot_single_colour_checker('ColorChecker 2005', **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Multi_Colour_Checkers.png')
    plt.close(
        plot_multi_colour_checkers(['ColorChecker 1976', 'ColorChecker 2005'],
                                   **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Single_SD.png')
    data = {
        500: 0.0651,
        520: 0.0705,
        540: 0.0772,
        560: 0.0870,
        580: 0.1128,
        600: 0.1360
    }
    sd = SpectralDistribution(data, name='Custom')
    plt.close(plot_single_sd(sd, **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Multi_SDS.png')
    data_1 = {
        500: 0.004900,
        510: 0.009300,
        520: 0.063270,
        530: 0.165500,
        540: 0.290400,
        550: 0.433450,
        560: 0.594500
    }
    data_2 = {
        500: 0.323000,
        510: 0.503000,
        520: 0.710000,
        530: 0.862000,
        540: 0.954000,
        550: 0.994950,
        560: 0.995000
    }
    spd1 = SpectralDistribution(data_1, name='Custom 1')
    spd2 = SpectralDistribution(data_2, name='Custom 2')
    plt.close(plot_multi_sds([spd1, spd2], **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Single_CMFS.png')
    plt.close(
        plot_single_cmfs('CIE 1931 2 Degree Standard Observer',
                         **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Multi_CMFS.png')
    cmfs = ('CIE 1931 2 Degree Standard Observer',
            'CIE 1964 10 Degree Standard Observer')
    plt.close(plot_multi_cmfs(cmfs, **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Single_Illuminant_SD.png')
    plt.close(plot_single_illuminant_sd('A', **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Multi_Illuminant_SDS.png')
    plt.close(plot_multi_illuminant_sds(['A', 'B', 'C'], **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Visible_Spectrum.png')
    plt.close(plot_visible_spectrum(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Single_Lightness_Function.png')
    plt.close(plot_single_lightness_function('CIE 1976', **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Multi_Lightness_Functions.png')
    plt.close(
        plot_multi_lightness_functions(['CIE 1976', 'Wyszecki 1963'],
                                       **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Single_Luminance_Function.png')
    plt.close(plot_single_luminance_function('CIE 1976', **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Multi_Luminance_Functions.png')
    plt.close(
        plot_multi_luminance_functions(['CIE 1976', 'Newhall 1943'],
                                       **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Blackbody_Spectral_Radiance.png')
    plt.close(
        plot_blackbody_spectral_radiance(3500,
                                         blackbody='VY Canis Major',
                                         **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Blackbody_Colours.png')
    plt.close(
        plot_blackbody_colours(SpectralShape(150, 12500, 50), **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Single_Colour_Swatch.png')
    RGB = ColourSwatch(RGB=(0.45620519, 0.03081071, 0.04091952))
    plt.close(plot_single_colour_swatch(RGB, **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Multi_Colour_Swatches.png')
    RGB_1 = ColourSwatch(RGB=(0.45293517, 0.31732158, 0.26414773))
    RGB_2 = ColourSwatch(RGB=(0.77875824, 0.57726450, 0.50453169))
    plt.close(plot_multi_colour_swatches([RGB_1, RGB_2], **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Single_Function.png')
    plt.close(plot_single_function(lambda x: x**(1 / 2.2), **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Multi_Functions.png')
    functions = {
        'Gamma 2.2': lambda x: x**(1 / 2.2),
        'Gamma 2.4': lambda x: x**(1 / 2.4),
        'Gamma 2.6': lambda x: x**(1 / 2.6),
    }
    plt.close(plot_multi_functions(functions, **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Image.png')
    path = os.path.join(output_directory, 'Logo_Medium_001.png')
    plt.close(plot_image(read_image(str(path)), **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_Corresponding_Chromaticities_Prediction.png')
    plt.close(
        plot_corresponding_chromaticities_prediction(1, 'Von Kries', 'CAT02',
                                                     **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Spectral_Locus.png')
    plt.close(
        plot_spectral_locus(spectral_locus_colours='RGB', **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Chromaticity_Diagram_Colours.png')
    plt.close(plot_chromaticity_diagram_colours(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Chromaticity_Diagram.png')
    plt.close(plot_chromaticity_diagram(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Chromaticity_Diagram_CIE1931.png')
    plt.close(plot_chromaticity_diagram_CIE1931(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Chromaticity_Diagram_CIE1960UCS.png')
    plt.close(plot_chromaticity_diagram_CIE1960UCS(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Chromaticity_Diagram_CIE1976UCS.png')
    plt.close(plot_chromaticity_diagram_CIE1976UCS(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_SDS_In_Chromaticity_Diagram.png')
    A = ILLUMINANTS_SDS['A']
    D65 = ILLUMINANTS_SDS['D65']
    plt.close(plot_sds_in_chromaticity_diagram([A, D65], **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1931.png')
    plt.close(
        plot_sds_in_chromaticity_diagram_CIE1931([A, D65], **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1960UCS.png')
    plt.close(
        plot_sds_in_chromaticity_diagram_CIE1960UCS([A, D65], **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1976UCS.png')
    plt.close(
        plot_sds_in_chromaticity_diagram_CIE1976UCS([A, D65], **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Pointer_Gamut.png')
    plt.close(plot_pointer_gamut(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_RGB_Colourspaces_In_Chromaticity_Diagram.png')
    plt.close(
        plot_RGB_colourspaces_in_chromaticity_diagram(
            ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_RGB_Colourspaces_In_Chromaticity_Diagram_CIE1931.png')
    plt.close(
        plot_RGB_colourspaces_in_chromaticity_diagram_CIE1931(
            ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_RGB_Colourspaces_In_'
        'Chromaticity_Diagram_CIE1960UCS.png')
    plt.close(
        plot_RGB_colourspaces_in_chromaticity_diagram_CIE1960UCS(
            ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_RGB_Colourspaces_In_'
        'Chromaticity_Diagram_CIE1976UCS.png')
    plt.close(
        plot_RGB_colourspaces_in_chromaticity_diagram_CIE1976UCS(
            ['ITU-R BT.709', 'ACEScg', 'S-Gamut'], **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_RGB_Chromaticities_In_'
        'Chromaticity_Diagram.png')
    RGB = np.random.random((128, 128, 3))
    plt.close(
        plot_RGB_chromaticities_in_chromaticity_diagram(
            RGB, 'ITU-R BT.709', **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_RGB_Chromaticities_In_'
        'Chromaticity_Diagram_CIE1931.png')
    plt.close(
        plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931(
            RGB, 'ITU-R BT.709', **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_RGB_Chromaticities_In_'
        'Chromaticity_Diagram_CIE1960UCS.png')
    plt.close(
        plot_RGB_chromaticities_in_chromaticity_diagram_CIE1960UCS(
            RGB, 'ITU-R BT.709', **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_RGB_Chromaticities_In_'
        'Chromaticity_Diagram_CIE1976UCS.png')
    plt.close(
        plot_RGB_chromaticities_in_chromaticity_diagram_CIE1976UCS(
            RGB, 'ITU-R BT.709', **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_Ellipses_MacAdam1942_In_Chromaticity_Diagram.png')
    plt.close(
        plot_ellipses_MacAdam1942_in_chromaticity_diagram(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Ellipses_MacAdam1942_In_'
        'Chromaticity_Diagram_CIE1931.png')
    plt.close(
        plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1931(
            **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Ellipses_MacAdam1942_In_'
        'Chromaticity_Diagram_CIE1960UCS.png')
    plt.close(
        plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1960UCS(
            **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Ellipses_MacAdam1942_In_'
        'Chromaticity_Diagram_CIE1976UCS.png')
    plt.close(
        plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1976UCS(
            **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Single_CCTF.png')
    plt.close(plot_single_cctf('ITU-R BT.709', **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Multi_CCTFs.png')
    plt.close(plot_multi_cctfs(['ITU-R BT.709', 'sRGB'], **arguments)[0])

    data = np.array([
        [
            None,
            np.array([0.95010000, 1.00000000, 1.08810000]),
            np.array([0.40920000, 0.28120000, 0.30600000]),
            np.array([
                [0.02495100, 0.01908600, 0.02032900],
                [0.10944300, 0.06235900, 0.06788100],
                [0.27186500, 0.18418700, 0.19565300],
                [0.48898900, 0.40749400, 0.44854600],
            ]),
            None,
        ],
        [
            None,
            np.array([0.95010000, 1.00000000, 1.08810000]),
            np.array([0.30760000, 0.48280000, 0.42770000]),
            np.array([
                [0.02108000, 0.02989100, 0.02790400],
                [0.06194700, 0.11251000, 0.09334400],
                [0.15255800, 0.28123300, 0.23234900],
                [0.34157700, 0.56681300, 0.47035300],
            ]),
            None,
        ],
        [
            None,
            np.array([0.95010000, 1.00000000, 1.08810000]),
            np.array([0.39530000, 0.28120000, 0.18450000]),
            np.array([
                [0.02436400, 0.01908600, 0.01468800],
                [0.10331200, 0.06235900, 0.02854600],
                [0.26311900, 0.18418700, 0.12109700],
                [0.43158700, 0.40749400, 0.39008600],
            ]),
            None,
        ],
        [
            None,
            np.array([0.95010000, 1.00000000, 1.08810000]),
            np.array([0.20510000, 0.18420000, 0.57130000]),
            np.array([
                [0.03039800, 0.02989100, 0.06123300],
                [0.08870000, 0.08498400, 0.21843500],
                [0.18405800, 0.18418700, 0.40111400],
                [0.32550100, 0.34047200, 0.50296900],
                [0.53826100, 0.56681300, 0.80010400],
            ]),
            None,
        ],
        [
            None,
            np.array([0.95010000, 1.00000000, 1.08810000]),
            np.array([0.35770000, 0.28120000, 0.11250000]),
            np.array([
                [0.03678100, 0.02989100, 0.01481100],
                [0.17127700, 0.11251000, 0.01229900],
                [0.30080900, 0.28123300, 0.21229800],
                [0.52976000, 0.40749400, 0.11720000],
            ]),
            None,
        ],
    ])
    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Constant_Hue_Loci.png')
    plt.close(plot_constant_hue_loci(data, 'IPT', **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Single_Munsell_Value_Function.png')
    plt.close(plot_single_munsell_value_function('ASTM D1535', **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Multi_Munsell_Value_Functions.png')
    plt.close(
        plot_multi_munsell_value_functions(['ASTM D1535', 'McCamy 1987'],
                                           **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Single_SD_Rayleigh_Scattering.png')
    plt.close(plot_single_sd_rayleigh_scattering(**arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_The_Blue_Sky.png')
    plt.close(plot_the_blue_sky(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Colour_Quality_Bars.png')
    illuminant = ILLUMINANTS_SDS['FL2']
    light_source = LIGHT_SOURCES_SDS['Kinoton 75P']
    light_source = light_source.copy().align(SpectralShape(360, 830, 1))
    cqs_i = colour_quality_scale(illuminant, additional_data=True)
    cqs_l = colour_quality_scale(light_source, additional_data=True)
    plt.close(plot_colour_quality_bars([cqs_i, cqs_l], **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_Single_SD_Colour_Rendering_Index_Bars.png')
    illuminant = ILLUMINANTS_SDS['FL2']
    plt.close(
        plot_single_sd_colour_rendering_index_bars(illuminant, **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_Multi_SDS_Colour_Rendering_Indexes_Bars.png')
    light_source = LIGHT_SOURCES_SDS['Kinoton 75P']
    plt.close(
        plot_multi_sds_colour_rendering_indexes_bars(
            [illuminant, light_source], **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_Single_SD_Colour_Quality_Scale_Bars.png')
    illuminant = ILLUMINANTS_SDS['FL2']
    plt.close(
        plot_single_sd_colour_quality_scale_bars(illuminant, **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_Multi_SDS_Colour_Quality_Scales_Bars.png')
    light_source = LIGHT_SOURCES_SDS['Kinoton 75P']
    plt.close(
        plot_multi_sds_colour_quality_scales_bars([illuminant, light_source],
                                                  **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_Planckian_Locus.png')
    plt.close(plot_planckian_locus(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Planckian_Locus_CIE1931.png')
    plt.close(plot_planckian_locus_CIE1931(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_Planckian_Locus_CIE1960UCS.png')
    plt.close(plot_planckian_locus_CIE1960UCS(**arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram.png')
    plt.close(
        plot_planckian_locus_in_chromaticity_diagram(['A', 'B', 'C'],
                                                     **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram_CIE1931.png')
    plt.close(
        plot_planckian_locus_in_chromaticity_diagram_CIE1931(['A', 'B', 'C'],
                                                             **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory,
        'Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram_CIE1960UCS.png')
    plt.close(
        plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS(
            ['A', 'B', 'C'], **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_RGB_Colourspaces_Gamuts.png')
    plt.close(
        plot_RGB_colourspaces_gamuts(['ITU-R BT.709', 'ACEScg', 'S-Gamut'],
                                     **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Plotting_Plot_RGB_Colourspaces_Gamuts.png')
    plt.close(
        plot_RGB_colourspaces_gamuts(['ITU-R BT.709', 'ACEScg', 'S-Gamut'],
                                     **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Plotting_Plot_RGB_Scatter.png')
    plt.close(plot_RGB_scatter(RGB, 'ITU-R BT.709', **arguments)[0])

    filename = os.path.join(
        output_directory,
        'Plotting_Plot_Colour_Automatic_Conversion_Graph.png')
    plot_automatic_colour_conversion_graph(filename)

    # *************************************************************************
    # "tutorial.rst"
    # *************************************************************************
    arguments['filename'] = os.path.join(output_directory,
                                         'Tutorial_Visible_Spectrum.png')
    plt.close(plot_visible_spectrum(**arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Tutorial_Sample_SD.png')
    sample_sd_data = {
        380: 0.048,
        385: 0.051,
        390: 0.055,
        395: 0.060,
        400: 0.065,
        405: 0.068,
        410: 0.068,
        415: 0.067,
        420: 0.064,
        425: 0.062,
        430: 0.059,
        435: 0.057,
        440: 0.055,
        445: 0.054,
        450: 0.053,
        455: 0.053,
        460: 0.052,
        465: 0.052,
        470: 0.052,
        475: 0.053,
        480: 0.054,
        485: 0.055,
        490: 0.057,
        495: 0.059,
        500: 0.061,
        505: 0.062,
        510: 0.065,
        515: 0.067,
        520: 0.070,
        525: 0.072,
        530: 0.074,
        535: 0.075,
        540: 0.076,
        545: 0.078,
        550: 0.079,
        555: 0.082,
        560: 0.087,
        565: 0.092,
        570: 0.100,
        575: 0.107,
        580: 0.115,
        585: 0.122,
        590: 0.129,
        595: 0.134,
        600: 0.138,
        605: 0.142,
        610: 0.146,
        615: 0.150,
        620: 0.154,
        625: 0.158,
        630: 0.163,
        635: 0.167,
        640: 0.173,
        645: 0.180,
        650: 0.188,
        655: 0.196,
        660: 0.204,
        665: 0.213,
        670: 0.222,
        675: 0.231,
        680: 0.242,
        685: 0.251,
        690: 0.261,
        695: 0.271,
        700: 0.282,
        705: 0.294,
        710: 0.305,
        715: 0.318,
        720: 0.334,
        725: 0.354,
        730: 0.372,
        735: 0.392,
        740: 0.409,
        745: 0.420,
        750: 0.436,
        755: 0.450,
        760: 0.462,
        765: 0.465,
        770: 0.448,
        775: 0.432,
        780: 0.421
    }

    sd = SpectralDistribution(sample_sd_data, name='Sample')
    plt.close(plot_single_sd(sd, **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Tutorial_SD_Interpolation.png')
    sd_copy = sd.copy()
    sd_copy.interpolate(SpectralShape(400, 770, 1))
    plt.close(
        plot_multi_sds([sd, sd_copy],
                       bounding_box=[730, 780, 0.25, 0.5],
                       **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Tutorial_Sample_Swatch.png')
    sd = SpectralDistribution(sample_sd_data)
    cmfs = STANDARD_OBSERVERS_CMFS['CIE 1931 2 Degree Standard Observer']
    illuminant = ILLUMINANTS_SDS['D65']
    with domain_range_scale('1'):
        XYZ = sd_to_XYZ(sd, cmfs, illuminant)
        RGB = XYZ_to_sRGB(XYZ)
    plt.close(
        plot_single_colour_swatch(ColourSwatch('Sample', RGB),
                                  text_parameters={'size': 'x-large'},
                                  **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Tutorial_Neutral5.png')
    patch_name = 'neutral 5 (.70 D)'
    patch_sd = COLOURCHECKERS_SDS['ColorChecker N Ohta'][patch_name]
    with domain_range_scale('1'):
        XYZ = sd_to_XYZ(patch_sd, cmfs, illuminant)
        RGB = XYZ_to_sRGB(XYZ)
    plt.close(
        plot_single_colour_swatch(ColourSwatch(patch_name.title(), RGB),
                                  text_parameters={'size': 'x-large'},
                                  **arguments)[0])

    arguments['filename'] = os.path.join(output_directory,
                                         'Tutorial_Colour_Checker.png')
    plt.close(
        plot_single_colour_checker(colour_checker='ColorChecker 2005',
                                   text_parameters={'visible': False},
                                   **arguments)[0])

    arguments['filename'] = os.path.join(
        output_directory, 'Tutorial_CIE_1931_Chromaticity_Diagram.png')
    xy = XYZ_to_xy(XYZ)
    plot_chromaticity_diagram_CIE1931(standalone=False)
    x, y = xy
    plt.plot(x, y, 'o-', color='white')
    # Annotating the plot.
    plt.annotate(patch_sd.name.title(),
                 xy=xy,
                 xytext=(-50, 30),
                 textcoords='offset points',
                 arrowprops=dict(arrowstyle='->',
                                 connectionstyle='arc3, rad=-0.2'))
    plt.close(
        render(standalone=True,
               limits=(-0.1, 0.9, -0.1, 0.9),
               x_tighten=True,
               y_tighten=True,
               **arguments)[0])

    # *************************************************************************
    # "basics.rst"
    # *************************************************************************
    arguments['filename'] = os.path.join(output_directory,
                                         'Basics_Logo_Small_001_CIE_XYZ.png')
    RGB = read_image(os.path.join(output_directory, 'Logo_Small_001.png'))[...,
                                                                           0:3]
    XYZ = sRGB_to_XYZ(RGB)
    plt.close(
        plot_image(XYZ, text_parameters={'text': 'sRGB to XYZ'},
                   **arguments)[0])
colour_style()

ISHIHARA_CBT_3_IMAGE = colour.cctf_decoding(
    colour.read_image(
        os.path.join(RESOURCES_DIRECTORY,
                     "Ishihara_Colour_Blindness_Test_Plate_3.png")),
    function="sRGB",
)

message_box("Colour Blindness Plots")

message_box('Displaying "Ishihara Colour Blindness Test - Plate 3".')
plot_image(
    colour.cctf_encoding(ISHIHARA_CBT_3_IMAGE),
    text_kwargs={
        "text": "Normal Trichromat",
        "color": "black"
    },
)

print("\n")

message_box(
    'Simulating average "Protanomaly" on '
    '"Ishihara Colour Blindness Test - Plate 3" with Machado (2010) model and '
    "pre-computed matrix.")
plot_cvd_simulation_Machado2009(
    ISHIHARA_CBT_3_IMAGE,
    "Protanomaly",
    0.5,
    text_kwargs={
Beispiel #7
0
RESOURCES_DIRECTORY = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                   'resources')

colour_style()

ISHIHARA_CBT_3_IMAGE = colour.cctf_decoding(colour.read_image(
    os.path.join(RESOURCES_DIRECTORY,
                 'Ishihara_Colour_Blindness_Test_Plate_3.png')),
                                            function='sRGB')

message_box('Colour Blindness Plots')

message_box('Displaying "Ishihara Colour Blindness Test - Plate 3".')
plot_image(colour.cctf_encoding(ISHIHARA_CBT_3_IMAGE),
           text_parameters={
               'text': 'Normal Trichromat',
               'color': 'black'
           })

print('\n')

message_box('Simulating average "Protanomaly" on '
            '"Ishihara Colour Blindness Test - Plate 3" with Machado (2010) '
            'model and pre-computed matrix.')
plot_cvd_simulation_Machado2009(ISHIHARA_CBT_3_IMAGE,
                                'Protanomaly',
                                0.5,
                                text_parameters={
                                    'text': 'Protanomaly - 50%',
                                    'color': 'black'
                                })
Beispiel #8
0
def plot_colour_vector_graphic(
        specification: ColourQuality_Specification_ANSIIESTM3018,
        **kwargs: Any) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot *Color Vector Graphic* according to
    *ANSI/IES TM-30-18 Colour Rendition Report*.

    Parameters
    ----------
    specification
        *ANSI/IES TM-30-18 Colour Rendition Report* specification.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes

    Examples
    --------
    >>> from colour import SDS_ILLUMINANTS
    >>> from colour.quality import colour_fidelity_index_ANSIIESTM3018
    >>> sd = SDS_ILLUMINANTS['FL2']
    >>> specification = colour_fidelity_index_ANSIIESTM3018(sd, True)
    >>> plot_colour_vector_graphic(specification)
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)
    """

    settings: Dict[str, Any] = dict(kwargs)
    settings["standalone"] = False

    # Background
    background_image = read_image(
        os.path.join(RESOURCES_DIRECTORY_ANSIIESTM3018, "CVG_Background.jpg"))
    _figure, axes = plot_image(
        background_image,
        imshow_kwargs={"extent": [-1.5, 1.5, -1.5, 1.5]},
        **settings,
    )

    # Lines dividing the hues in 16 equal parts along with bin numbers.
    axes.plot(0, 0, "+", color="#A6A6A6")
    for i in range(16):
        angle = 2 * np.pi * i / 16
        dx = np.cos(angle)
        dy = np.sin(angle)
        axes.plot(
            (0.15 * dx, 1.5 * dx),
            (0.15 * dy, 1.5 * dy),
            "--",
            color="#A6A6A6",
            lw=0.75,
            zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_line,
        )

        angle = 2 * np.pi * (i + 0.5) / 16
        axes.annotate(
            str(i + 1),
            color="#A6A6A6",
            ha="center",
            va="center",
            xy=(1.41 * np.cos(angle), 1.41 * np.sin(angle)),
            weight="bold",
            size=9,
            zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_annotation,
        )

    # Circles.
    circle = plt.Circle(
        (0, 0),
        1,
        color="black",
        lw=1.25,
        fill=False,
        zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_polygon,
    )
    axes.add_artist(circle)
    for radius in [0.8, 0.9, 1.1, 1.2]:
        circle = plt.Circle(
            (0, 0),
            radius,
            color="white",
            lw=0.75,
            fill=False,
            zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_polygon,
        )
        axes.add_artist(circle)

    # -/+20% marks near the white circles.
    props = dict(ha="right", color="white", size=7)
    axes.annotate(
        "-20%",
        xy=(0, -0.8),
        va="bottom",
        zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_annotation,
        **props,
    )
    axes.annotate(
        "+20%",
        xy=(0, -1.2),
        va="top",
        zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_annotation,
        **props,
    )

    # Average "CAM02" h correlate for each bin, in radians.
    average_hues = np.radians([
        np.mean(
            as_float_array([
                cast(
                    Floating,
                    specification.colorimetry_data[1][i].CAM.h,
                ) for i in specification.bins[j]
            ])) for j in range(16)
    ])
    xy_reference = np.transpose(
        np.vstack([np.cos(average_hues),
                   np.sin(average_hues)]))

    # Arrow offsets as defined by the standard.
    offsets = (specification.averages_test - specification.averages_reference
               ) / specification.average_norms[:, np.newaxis]
    xy_test = xy_reference + offsets

    # Arrows.
    for i in range(16):
        axes.arrow(
            xy_reference[i, 0],
            xy_reference[i, 1],
            offsets[i, 0],
            offsets[i, 1],
            length_includes_head=True,
            width=0.005,
            head_width=0.04,
            linewidth=None,
            color=_COLOURS_BIN_ARROW[i],
            zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_annotation,
        )

    # Red (test) gamut shape.
    loop = np.append(xy_test, xy_test[0, np.newaxis], axis=0)
    axes.plot(
        loop[:, 0],
        loop[:, 1],
        "-",
        color="#F05046",
        lw=2,
        zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_line,
    )

    def corner_label_and_text(label: str, text: str, ha: str, va: str):
        """Draw a label and text in given corner."""

        x = -1.45 if ha == "left" else 1.45
        y = 1.45 if va == "top" else -1.45
        y_text = -15 if va == "top" else 15

        axes.annotate(
            text,
            xy=(x, y),
            color="black",
            ha=ha,
            va=va,
            weight="bold",
            size="larger",
            zorder=CONSTANTS_COLOUR_STYLE.zorder.foreground_label,
        )
        axes.annotate(
            label,
            xy=(x, y),
            color="black",
            xytext=(0, y_text),
            textcoords="offset points",
            ha=ha,
            va=va,
            size="small",
            zorder=CONSTANTS_COLOUR_STYLE.zorder.foreground_label,
        )

    corner_label_and_text("$R_f$", f"{specification.R_f:.0f}", "left", "top")
    corner_label_and_text("$R_g$", f"{specification.R_g:.0f}", "right", "top")
    corner_label_and_text("CCT", f"{specification.CCT:.0f} K", "left",
                          "bottom")
    corner_label_and_text("$D_{uv}$", f"{specification.D_uv:.4f}", "right",
                          "bottom")

    settings = {"standalone": True}
    settings.update(kwargs)

    return render(**settings)
Beispiel #9
0
def plot_colour_vector_graphic(specification, **kwargs):
    """
    Plots *Color Vector Graphic* according to
    *ANSI/IES TM-30-18 Colour Rendition Report*.

    Parameters
    ----------
    specification : ColourQuality_Specification_ANSIIESTM3018
        *ANSI/IES TM-30-18 Colour Rendition Report* specification.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes

    Examples
    --------
    >>> from colour import SDS_ILLUMINANTS
    >>> from colour.quality import colour_fidelity_index_ANSIIESTM3018
    >>> sd = SDS_ILLUMINANTS['FL2']
    >>> specification = colour_fidelity_index_ANSIIESTM3018(sd, True)
    >>> plot_colour_vector_graphic(specification)
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)
    """

    settings = kwargs.copy()
    settings['standalone'] = False

    # Background
    background_image = read_image(
        os.path.join(RESOURCES_DIRECTORY_ANSIIESTM3018, 'CVG_Background.jpg'))
    _figure, axes = plot_image(
        background_image,
        imshow_kwargs={'extent': [-1.5, 1.5, -1.5, 1.5]},
        **settings)

    # Lines dividing the hues in 16 equal parts along with bin numbers.
    axes.plot(0, 0, '+', color='#A6A6A6')
    for i in range(16):
        angle = 2 * np.pi * i / 16
        dx = np.cos(angle)
        dy = np.sin(angle)
        axes.plot((0.15 * dx, 1.5 * dx), (0.15 * dy, 1.5 * dy),
                  '--',
                  color='#A6A6A6',
                  lw=0.75)

        angle = 2 * np.pi * (i + 0.5) / 16
        axes.annotate(str(i + 1),
                      color='#A6A6A6',
                      ha='center',
                      va='center',
                      xy=(1.41 * np.cos(angle), 1.41 * np.sin(angle)),
                      weight='bold',
                      size=9)

    # Circles.
    circle = plt.Circle((0, 0), 1, color='black', lw=1.25, fill=False)
    axes.add_artist(circle)
    for radius in [0.8, 0.9, 1.1, 1.2]:
        circle = plt.Circle((0, 0), radius, color='white', lw=0.75, fill=False)
        axes.add_artist(circle)

    # -/+20% marks near the white circles.
    props = dict(ha='right', color='white', size=7)
    axes.annotate('-20%', xy=(0, -0.8), va='bottom', **props)
    axes.annotate('+20%', xy=(0, -1.2), va='top', **props)

    # Average "CAM02" h correlate for each bin, in radians.
    average_hues = as_float_array([
        np.mean([
            specification.colorimetry_data[1][i].CAM.h
            for i in specification.bins[j]
        ]) for j in range(16)
    ]) / 180 * np.pi
    xy_reference = np.transpose(
        np.vstack([np.cos(average_hues),
                   np.sin(average_hues)]))

    # Arrow offsets as defined by the standard.
    offsets = (
        (specification.averages_test - specification.averages_reference) /
        specification.average_norms[:, np.newaxis])
    xy_test = xy_reference + offsets

    # Arrows.
    for i in range(16):
        axes.arrow(xy_reference[i, 0],
                   xy_reference[i, 1],
                   offsets[i, 0],
                   offsets[i, 1],
                   length_includes_head=True,
                   width=0.005,
                   head_width=0.04,
                   linewidth=None,
                   color=_BIN_ARROW_COLOURS[i])

    # Red (test) gamut shape.
    loop = np.append(xy_test, xy_test[0, np.newaxis], axis=0)
    axes.plot(loop[:, 0], loop[:, 1], '-', color='#F05046', lw=2)

    def corner_label_and_text(label, text, ha, va):
        """
        Draws a label and text in given corner.
        """

        x = -1.45 if ha == 'left' else 1.45
        y = 1.45 if va == 'top' else -1.45
        y_text = -15 if va == 'top' else 15

        axes.annotate(text,
                      xy=(x, y),
                      color='black',
                      ha=ha,
                      va=va,
                      weight='bold',
                      size='larger')
        axes.annotate(label,
                      xy=(x, y),
                      color='black',
                      xytext=(0, y_text),
                      textcoords='offset points',
                      ha=ha,
                      va=va,
                      size='small')

    corner_label_and_text('$R_f$', '{0:.0f}'.format(specification.R_f), 'left',
                          'top')
    corner_label_and_text('$R_g$', '{0:.0f}'.format(specification.R_g),
                          'right', 'top')
    corner_label_and_text('CCT', '{0:.0f} K'.format(specification.CCT), 'left',
                          'bottom')
    corner_label_and_text('$D_{uv}$', '{0:.4f}'.format(specification.D_uv),
                          'right', 'bottom')

    settings = {'standalone': True}
    settings.update(kwargs)

    return render(**settings)
Beispiel #10
0
def generate_documentation_plots(output_directory: str):
    """
    Generate documentation plots.

    Parameters
    ----------
    output_directory
        Output directory.
    """

    filter_warnings()

    colour_style()

    np.random.seed(0)

    # *************************************************************************
    # "README.rst"
    # *************************************************************************
    filename = os.path.join(
        output_directory, "Examples_Colour_Automatic_Conversion_Graph.png"
    )
    plot_automatic_colour_conversion_graph(filename)

    arguments = {
        "tight_layout": True,
        "transparent_background": True,
        "filename": os.path.join(
            output_directory, "Examples_Plotting_Visible_Spectrum.png"
        ),
    }
    plt.close(
        plot_visible_spectrum(
            "CIE 1931 2 Degree Standard Observer", **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Examples_Plotting_Illuminant_F1_SD.png"
    )
    plt.close(plot_single_illuminant_sd("FL1", **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Examples_Plotting_Blackbodies.png"
    )
    blackbody_sds = [
        sd_blackbody(i, SpectralShape(0, 10000, 10))
        for i in range(1000, 15000, 1000)
    ]
    plt.close(
        plot_multi_sds(
            blackbody_sds,
            y_label="W / (sr m$^2$) / m",
            plot_kwargs={"use_sd_colours": True, "normalise_sd_colours": True},
            legend_location="upper right",
            bounding_box=(0, 1250, 0, 2.5e6),
            **arguments,
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Examples_Plotting_Cone_Fundamentals.png"
    )
    plt.close(
        plot_single_cmfs(
            "Stockman & Sharpe 2 Degree Cone Fundamentals",
            y_label="Sensitivity",
            bounding_box=(390, 870, 0, 1.1),
            **arguments,
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Examples_Plotting_Luminous_Efficiency.png"
    )
    plt.close(
        plot_multi_sds(
            (
                sd_mesopic_luminous_efficiency_function(0.2),
                SDS_LEFS_PHOTOPIC["CIE 1924 Photopic Standard Observer"],
                SDS_LEFS_SCOTOPIC["CIE 1951 Scotopic Standard Observer"],
            ),
            y_label="Luminous Efficiency",
            legend_location="upper right",
            y_tighten=True,
            margins=(0, 0, 0, 0.1),
            **arguments,
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Examples_Plotting_BabelColor_Average.png"
    )
    plt.close(
        plot_multi_sds(
            SDS_COLOURCHECKERS["BabelColor Average"].values(),
            plot_kwargs={"use_sd_colours": True},
            title=("BabelColor Average - " "Spectral Distributions"),
            **arguments,
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Examples_Plotting_ColorChecker_2005.png"
    )
    plt.close(
        plot_single_colour_checker(
            "ColorChecker 2005", text_kwargs={"visible": False}, **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Examples_Plotting_Chromaticities_Prediction.png"
    )
    plt.close(
        plot_corresponding_chromaticities_prediction(
            2, "Von Kries", **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Examples_Plotting_Chromaticities_CIE_1931_Chromaticity_Diagram.png",
    )
    RGB = np.random.random((32, 32, 3))
    plt.close(
        plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931(
            RGB,
            "ITU-R BT.709",
            colourspaces=["ACEScg", "S-Gamut"],
            show_pointer_gamut=True,
            **arguments,
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Examples_Plotting_CRI.png"
    )
    plt.close(
        plot_single_sd_colour_rendering_index_bars(
            SDS_ILLUMINANTS["FL2"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Examples_Plotting_Colour_Rendition_Report.png"
    )
    plt.close(
        plot_single_sd_colour_rendition_report(
            SDS_ILLUMINANTS["FL2"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Examples_Plotting_Plot_Visible_Spectrum_Section.png"
    )
    plt.close(
        plot_visible_spectrum_section(
            section_colours="RGB", section_opacity=0.15, **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Examples_Plotting_Plot_RGB_Colourspace_Section.png"
    )
    plt.close(
        plot_RGB_colourspace_section(
            "sRGB", section_colours="RGB", section_opacity=0.15, **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Examples_Plotting_CCT_CIE_1960_UCS_Chromaticity_Diagram.png",
    )
    plt.close(
        plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS(
            ["A", "B", "C"], **arguments
        )[0]
    )

    # *************************************************************************
    # Documentation
    # *************************************************************************
    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_CVD_Simulation_Machado2009.png"
    )
    plt.close(plot_cvd_simulation_Machado2009(RGB, **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Single_Colour_Checker.png"
    )
    plt.close(plot_single_colour_checker("ColorChecker 2005", **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Multi_Colour_Checkers.png"
    )
    plt.close(
        plot_multi_colour_checkers(
            ["ColorChecker 1976", "ColorChecker 2005"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Single_SD.png"
    )
    data = {
        500: 0.0651,
        520: 0.0705,
        540: 0.0772,
        560: 0.0870,
        580: 0.1128,
        600: 0.1360,
    }
    sd = SpectralDistribution(data, name="Custom")
    plt.close(plot_single_sd(sd, **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Multi_SDS.png"
    )
    data_1 = {
        500: 0.004900,
        510: 0.009300,
        520: 0.063270,
        530: 0.165500,
        540: 0.290400,
        550: 0.433450,
        560: 0.594500,
    }
    data_2 = {
        500: 0.323000,
        510: 0.503000,
        520: 0.710000,
        530: 0.862000,
        540: 0.954000,
        550: 0.994950,
        560: 0.995000,
    }
    spd1 = SpectralDistribution(data_1, name="Custom 1")
    spd2 = SpectralDistribution(data_2, name="Custom 2")
    plt.close(plot_multi_sds([spd1, spd2], **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Single_CMFS.png"
    )
    plt.close(
        plot_single_cmfs("CIE 1931 2 Degree Standard Observer", **arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Multi_CMFS.png"
    )
    cmfs = (
        "CIE 1931 2 Degree Standard Observer",
        "CIE 1964 10 Degree Standard Observer",
    )
    plt.close(plot_multi_cmfs(cmfs, **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Single_Illuminant_SD.png"
    )
    plt.close(plot_single_illuminant_sd("A", **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Multi_Illuminant_SDS.png"
    )
    plt.close(plot_multi_illuminant_sds(["A", "B", "C"], **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Visible_Spectrum.png"
    )
    plt.close(plot_visible_spectrum(**arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Single_Lightness_Function.png"
    )
    plt.close(plot_single_lightness_function("CIE 1976", **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Multi_Lightness_Functions.png"
    )
    plt.close(
        plot_multi_lightness_functions(
            ["CIE 1976", "Wyszecki 1963"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Single_Luminance_Function.png"
    )
    plt.close(plot_single_luminance_function("CIE 1976", **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Multi_Luminance_Functions.png"
    )
    plt.close(
        plot_multi_luminance_functions(
            ["CIE 1976", "Newhall 1943"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Blackbody_Spectral_Radiance.png"
    )
    plt.close(
        plot_blackbody_spectral_radiance(
            3500, blackbody="VY Canis Major", **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Blackbody_Colours.png"
    )
    plt.close(
        plot_blackbody_colours(SpectralShape(150, 12500, 50), **arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Single_Colour_Swatch.png"
    )
    RGB = ColourSwatch((0.45620519, 0.03081071, 0.04091952))
    plt.close(plot_single_colour_swatch(RGB, **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Multi_Colour_Swatches.png"
    )
    RGB_1 = ColourSwatch((0.45293517, 0.31732158, 0.26414773))
    RGB_2 = ColourSwatch((0.77875824, 0.57726450, 0.50453169))
    plt.close(plot_multi_colour_swatches([RGB_1, RGB_2], **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Single_Function.png"
    )
    plt.close(plot_single_function(lambda x: x ** (1 / 2.2), **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Multi_Functions.png"
    )
    functions = {
        "Gamma 2.2": lambda x: x ** (1 / 2.2),
        "Gamma 2.4": lambda x: x ** (1 / 2.4),
        "Gamma 2.6": lambda x: x ** (1 / 2.6),
    }
    plt.close(plot_multi_functions(functions, **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Image.png"
    )
    path = os.path.join(
        colour.__path__[0],
        "examples",
        "plotting",
        "resources",
        "Ishihara_Colour_Blindness_Test_Plate_3.png",
    )
    plt.close(plot_image(read_image(str(path)), **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Corresponding_Chromaticities_Prediction.png",
    )
    plt.close(
        plot_corresponding_chromaticities_prediction(
            1, "Von Kries", **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Spectral_Locus.png"
    )
    plt.close(
        plot_spectral_locus(spectral_locus_colours="RGB", **arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Chromaticity_Diagram_Colours.png"
    )
    plt.close(
        plot_chromaticity_diagram_colours(diagram_colours="RGB", **arguments)[
            0
        ]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Chromaticity_Diagram.png"
    )
    plt.close(plot_chromaticity_diagram(**arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Chromaticity_Diagram_CIE1931.png"
    )
    plt.close(plot_chromaticity_diagram_CIE1931(**arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Chromaticity_Diagram_CIE1960UCS.png"
    )
    plt.close(plot_chromaticity_diagram_CIE1960UCS(**arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Chromaticity_Diagram_CIE1976UCS.png"
    )
    plt.close(plot_chromaticity_diagram_CIE1976UCS(**arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_SDS_In_Chromaticity_Diagram.png"
    )
    A = SDS_ILLUMINANTS["A"]
    D65 = SDS_ILLUMINANTS["D65"]
    plt.close(plot_sds_in_chromaticity_diagram([A, D65], **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1931.png",
    )
    plt.close(
        plot_sds_in_chromaticity_diagram_CIE1931([A, D65], **arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1960UCS.png",
    )
    plt.close(
        plot_sds_in_chromaticity_diagram_CIE1960UCS([A, D65], **arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_SDS_In_Chromaticity_Diagram_CIE1976UCS.png",
    )
    plt.close(
        plot_sds_in_chromaticity_diagram_CIE1976UCS([A, D65], **arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Pointer_Gamut.png"
    )
    plt.close(plot_pointer_gamut(**arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_RGB_Colourspaces_In_Chromaticity_Diagram.png",
    )
    plt.close(
        plot_RGB_colourspaces_in_chromaticity_diagram(
            ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_RGB_Colourspaces_In_Chromaticity_Diagram_CIE1931.png",
    )
    plt.close(
        plot_RGB_colourspaces_in_chromaticity_diagram_CIE1931(
            ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_RGB_Colourspaces_In_"
        "Chromaticity_Diagram_CIE1960UCS.png",
    )
    plt.close(
        plot_RGB_colourspaces_in_chromaticity_diagram_CIE1960UCS(
            ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_RGB_Colourspaces_In_"
        "Chromaticity_Diagram_CIE1976UCS.png",
    )
    plt.close(
        plot_RGB_colourspaces_in_chromaticity_diagram_CIE1976UCS(
            ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_RGB_Chromaticities_In_" "Chromaticity_Diagram.png",
    )
    RGB = np.random.random((128, 128, 3))
    plt.close(
        plot_RGB_chromaticities_in_chromaticity_diagram(
            RGB, "ITU-R BT.709", **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_RGB_Chromaticities_In_"
        "Chromaticity_Diagram_CIE1931.png",
    )
    plt.close(
        plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931(
            RGB, "ITU-R BT.709", **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_RGB_Chromaticities_In_"
        "Chromaticity_Diagram_CIE1960UCS.png",
    )
    plt.close(
        plot_RGB_chromaticities_in_chromaticity_diagram_CIE1960UCS(
            RGB, "ITU-R BT.709", **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_RGB_Chromaticities_In_"
        "Chromaticity_Diagram_CIE1976UCS.png",
    )
    plt.close(
        plot_RGB_chromaticities_in_chromaticity_diagram_CIE1976UCS(
            RGB, "ITU-R BT.709", **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Ellipses_MacAdam1942_In_Chromaticity_Diagram.png",
    )
    plt.close(
        plot_ellipses_MacAdam1942_in_chromaticity_diagram(**arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Ellipses_MacAdam1942_In_"
        "Chromaticity_Diagram_CIE1931.png",
    )
    plt.close(
        plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1931(**arguments)[
            0
        ]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Ellipses_MacAdam1942_In_"
        "Chromaticity_Diagram_CIE1960UCS.png",
    )
    plt.close(
        plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1960UCS(
            **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Ellipses_MacAdam1942_In_"
        "Chromaticity_Diagram_CIE1976UCS.png",
    )
    plt.close(
        plot_ellipses_MacAdam1942_in_chromaticity_diagram_CIE1976UCS(
            **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Single_CCTF.png"
    )
    plt.close(plot_single_cctf("ITU-R BT.709", **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Multi_CCTFs.png"
    )
    plt.close(plot_multi_cctfs(["ITU-R BT.709", "sRGB"], **arguments)[0])

    data = np.array(
        [
            [
                None,
                np.array([0.95010000, 1.00000000, 1.08810000]),
                np.array([0.40920000, 0.28120000, 0.30600000]),
                np.array(
                    [
                        [0.02495100, 0.01908600, 0.02032900],
                        [0.10944300, 0.06235900, 0.06788100],
                        [0.27186500, 0.18418700, 0.19565300],
                        [0.48898900, 0.40749400, 0.44854600],
                    ]
                ),
                None,
            ],
            [
                None,
                np.array([0.95010000, 1.00000000, 1.08810000]),
                np.array([0.30760000, 0.48280000, 0.42770000]),
                np.array(
                    [
                        [0.02108000, 0.02989100, 0.02790400],
                        [0.06194700, 0.11251000, 0.09334400],
                        [0.15255800, 0.28123300, 0.23234900],
                        [0.34157700, 0.56681300, 0.47035300],
                    ]
                ),
                None,
            ],
            [
                None,
                np.array([0.95010000, 1.00000000, 1.08810000]),
                np.array([0.39530000, 0.28120000, 0.18450000]),
                np.array(
                    [
                        [0.02436400, 0.01908600, 0.01468800],
                        [0.10331200, 0.06235900, 0.02854600],
                        [0.26311900, 0.18418700, 0.12109700],
                        [0.43158700, 0.40749400, 0.39008600],
                    ]
                ),
                None,
            ],
            [
                None,
                np.array([0.95010000, 1.00000000, 1.08810000]),
                np.array([0.20510000, 0.18420000, 0.57130000]),
                np.array(
                    [
                        [0.03039800, 0.02989100, 0.06123300],
                        [0.08870000, 0.08498400, 0.21843500],
                        [0.18405800, 0.18418700, 0.40111400],
                        [0.32550100, 0.34047200, 0.50296900],
                        [0.53826100, 0.56681300, 0.80010400],
                    ]
                ),
                None,
            ],
            [
                None,
                np.array([0.95010000, 1.00000000, 1.08810000]),
                np.array([0.35770000, 0.28120000, 0.11250000]),
                np.array(
                    [
                        [0.03678100, 0.02989100, 0.01481100],
                        [0.17127700, 0.11251000, 0.01229900],
                        [0.30080900, 0.28123300, 0.21229800],
                        [0.52976000, 0.40749400, 0.11720000],
                    ]
                ),
                None,
            ],
        ]
    )
    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Constant_Hue_Loci.png"
    )
    plt.close(plot_constant_hue_loci(data, "IPT", **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Single_Munsell_Value_Function.png"
    )
    plt.close(plot_single_munsell_value_function("ASTM D1535", **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Multi_Munsell_Value_Functions.png"
    )
    plt.close(
        plot_multi_munsell_value_functions(
            ["ASTM D1535", "McCamy 1987"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Single_SD_Rayleigh_Scattering.png"
    )
    plt.close(plot_single_sd_rayleigh_scattering(**arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_The_Blue_Sky.png"
    )
    plt.close(plot_the_blue_sky(**arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Colour_Quality_Bars.png"
    )
    illuminant = SDS_ILLUMINANTS["FL2"]
    light_source = SDS_LIGHT_SOURCES["Kinoton 75P"]
    light_source = light_source.copy().align(SpectralShape(360, 830, 1))
    cqs_i = colour_quality_scale(illuminant, additional_data=True)
    cqs_l = colour_quality_scale(light_source, additional_data=True)
    plt.close(plot_colour_quality_bars([cqs_i, cqs_l], **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Single_SD_Colour_Rendering_Index_Bars.png",
    )
    illuminant = SDS_ILLUMINANTS["FL2"]
    plt.close(
        plot_single_sd_colour_rendering_index_bars(illuminant, **arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Multi_SDS_Colour_Rendering_Indexes_Bars.png",
    )
    light_source = SDS_LIGHT_SOURCES["Kinoton 75P"]
    plt.close(
        plot_multi_sds_colour_rendering_indexes_bars(
            [illuminant, light_source], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Single_SD_Colour_Quality_Scale_Bars.png",
    )
    illuminant = SDS_ILLUMINANTS["FL2"]
    plt.close(
        plot_single_sd_colour_quality_scale_bars(illuminant, **arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Multi_SDS_Colour_Quality_Scales_Bars.png",
    )
    light_source = SDS_LIGHT_SOURCES["Kinoton 75P"]
    plt.close(
        plot_multi_sds_colour_quality_scales_bars(
            [illuminant, light_source], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Hull_Section_Colours.png"
    )
    vertices, faces, _outline = primitive_cube(1, 1, 1, 64, 64, 64)
    XYZ_vertices = RGB_to_XYZ(
        vertices["position"] + 0.5,
        RGB_COLOURSPACE_sRGB.whitepoint,
        RGB_COLOURSPACE_sRGB.whitepoint,
        RGB_COLOURSPACE_sRGB.matrix_RGB_to_XYZ,
    )
    hull = trimesh.Trimesh(XYZ_vertices, faces, process=False)
    plt.close(
        plot_hull_section_colours(hull, section_colours="RGB", **arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Hull_Section_Contour.png"
    )
    plt.close(
        plot_hull_section_contour(hull, section_colours="RGB", **arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Visible_Spectrum_Section.png"
    )
    plt.close(
        plot_visible_spectrum_section(
            section_colours="RGB", section_opacity=0.15, **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_RGB_Colourspace_Section.png"
    )
    plt.close(
        plot_RGB_colourspace_section(
            "sRGB", section_colours="RGB", section_opacity=0.15, **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_Planckian_Locus.png"
    )
    plt.close(
        plot_planckian_locus(planckian_locus_colours="RGB", **arguments)[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram.png",
    )
    plt.close(
        plot_planckian_locus_in_chromaticity_diagram(
            ["A", "B", "C"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram_CIE1931.png",
    )
    plt.close(
        plot_planckian_locus_in_chromaticity_diagram_CIE1931(
            ["A", "B", "C"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Planckian_Locus_In_Chromaticity_Diagram_CIE1960UCS.png",
    )
    plt.close(
        plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS(
            ["A", "B", "C"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Single_SD_Colour_Rendition_Report_Full.png",
    )
    plt.close(
        plot_single_sd_colour_rendition_report(
            SDS_ILLUMINANTS["FL2"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Single_SD_Colour_Rendition_Report_Intermediate.png",
    )
    plt.close(
        plot_single_sd_colour_rendition_report(
            SDS_ILLUMINANTS["FL2"], "Intermediate", **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory,
        "Plotting_Plot_Single_SD_Colour_Rendition_Report_Simple.png",
    )
    plt.close(
        plot_single_sd_colour_rendition_report(
            SDS_ILLUMINANTS["FL2"], "Simple", **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_RGB_Colourspaces_Gamuts.png"
    )
    plt.close(
        plot_RGB_colourspaces_gamuts(
            ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_RGB_Colourspaces_Gamuts.png"
    )
    plt.close(
        plot_RGB_colourspaces_gamuts(
            ["ITU-R BT.709", "ACEScg", "S-Gamut"], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Plotting_Plot_RGB_Scatter.png"
    )
    plt.close(plot_RGB_scatter(RGB, "ITU-R BT.709", **arguments)[0])

    filename = os.path.join(
        output_directory, "Plotting_Plot_Colour_Automatic_Conversion_Graph.png"
    )
    plot_automatic_colour_conversion_graph(filename)

    # *************************************************************************
    # "tutorial.rst"
    # *************************************************************************
    arguments["filename"] = os.path.join(
        output_directory, "Tutorial_Visible_Spectrum.png"
    )
    plt.close(plot_visible_spectrum(**arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Tutorial_Sample_SD.png"
    )
    sample_sd_data = {
        380: 0.048,
        385: 0.051,
        390: 0.055,
        395: 0.060,
        400: 0.065,
        405: 0.068,
        410: 0.068,
        415: 0.067,
        420: 0.064,
        425: 0.062,
        430: 0.059,
        435: 0.057,
        440: 0.055,
        445: 0.054,
        450: 0.053,
        455: 0.053,
        460: 0.052,
        465: 0.052,
        470: 0.052,
        475: 0.053,
        480: 0.054,
        485: 0.055,
        490: 0.057,
        495: 0.059,
        500: 0.061,
        505: 0.062,
        510: 0.065,
        515: 0.067,
        520: 0.070,
        525: 0.072,
        530: 0.074,
        535: 0.075,
        540: 0.076,
        545: 0.078,
        550: 0.079,
        555: 0.082,
        560: 0.087,
        565: 0.092,
        570: 0.100,
        575: 0.107,
        580: 0.115,
        585: 0.122,
        590: 0.129,
        595: 0.134,
        600: 0.138,
        605: 0.142,
        610: 0.146,
        615: 0.150,
        620: 0.154,
        625: 0.158,
        630: 0.163,
        635: 0.167,
        640: 0.173,
        645: 0.180,
        650: 0.188,
        655: 0.196,
        660: 0.204,
        665: 0.213,
        670: 0.222,
        675: 0.231,
        680: 0.242,
        685: 0.251,
        690: 0.261,
        695: 0.271,
        700: 0.282,
        705: 0.294,
        710: 0.305,
        715: 0.318,
        720: 0.334,
        725: 0.354,
        730: 0.372,
        735: 0.392,
        740: 0.409,
        745: 0.420,
        750: 0.436,
        755: 0.450,
        760: 0.462,
        765: 0.465,
        770: 0.448,
        775: 0.432,
        780: 0.421,
    }

    sd = SpectralDistribution(sample_sd_data, name="Sample")
    plt.close(plot_single_sd(sd, **arguments)[0])

    arguments["filename"] = os.path.join(
        output_directory, "Tutorial_SD_Interpolation.png"
    )
    sd_copy = sd.copy()
    sd_copy.interpolate(SpectralShape(400, 770, 1))
    plt.close(
        plot_multi_sds(
            [sd, sd_copy], bounding_box=[730, 780, 0.25, 0.5], **arguments
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Tutorial_Sample_Swatch.png"
    )
    sd = SpectralDistribution(sample_sd_data)
    cmfs = MSDS_CMFS_STANDARD_OBSERVER["CIE 1931 2 Degree Standard Observer"]
    illuminant = SDS_ILLUMINANTS["D65"]
    with domain_range_scale("1"):
        XYZ = sd_to_XYZ(sd, cmfs, illuminant)
        RGB = XYZ_to_sRGB(XYZ)
    plt.close(
        plot_single_colour_swatch(
            ColourSwatch(RGB, "Sample"),
            text_kwargs={"size": "x-large"},
            **arguments,
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Tutorial_Neutral5.png"
    )
    patch_name = "neutral 5 (.70 D)"
    patch_sd = SDS_COLOURCHECKERS["ColorChecker N Ohta"][patch_name]
    with domain_range_scale("1"):
        XYZ = sd_to_XYZ(patch_sd, cmfs, illuminant)
        RGB = XYZ_to_sRGB(XYZ)
    plt.close(
        plot_single_colour_swatch(
            ColourSwatch(RGB, patch_name.title()),
            text_kwargs={"size": "x-large"},
            **arguments,
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Tutorial_Colour_Checker.png"
    )
    plt.close(
        plot_single_colour_checker(
            colour_checker="ColorChecker 2005",
            text_kwargs={"visible": False},
            **arguments,
        )[0]
    )

    arguments["filename"] = os.path.join(
        output_directory, "Tutorial_CIE_1931_Chromaticity_Diagram.png"
    )
    xy = XYZ_to_xy(XYZ)
    plot_chromaticity_diagram_CIE1931(standalone=False)
    x, y = xy
    plt.plot(x, y, "o-", color="white")
    # Annotating the plot.
    plt.annotate(
        patch_sd.name.title(),
        xy=xy,
        xytext=(-50, 30),
        textcoords="offset points",
        arrowprops=dict(arrowstyle="->", connectionstyle="arc3, rad=-0.2"),
    )
    plt.close(
        render(
            standalone=True,
            limits=(-0.1, 0.9, -0.1, 0.9),
            x_tighten=True,
            y_tighten=True,
            **arguments,
        )[0]
    )

    # *************************************************************************
    # "basics.rst"
    # *************************************************************************
    arguments["filename"] = os.path.join(
        output_directory, "Basics_Logo_Small_001_CIE_XYZ.png"
    )
    RGB = read_image(os.path.join(output_directory, "Logo_Small_001.png"))[
        ..., 0:3
    ]
    XYZ = sRGB_to_XYZ(RGB)
    plt.close(
        plot_image(XYZ, text_kwargs={"text": "sRGB to XYZ"}, **arguments)[0]
    )
RESOURCES_DIRECTORY = os.path.join(
    os.path.dirname(os.path.abspath(__file__)), 'resources')

colour_style()

ISHIHARA_CBT_3_IMAGE = colour.oetf_reverse(
    colour.read_image(
        os.path.join(RESOURCES_DIRECTORY,
                     'Ishihara_Colour_Blindness_Test_Plate_3.png')),
    function='sRGB')

message_box('Colour Blindness Plots')

message_box('Displaying "Ishihara Colour Blindness Test - Plate 3".')
plot_image(colour.oetf(ISHIHARA_CBT_3_IMAGE),
           text_parameters={'text': 'Normal Trichromat', 'color': 'black'})

print('\n')

message_box('Simulating average "Protanomaly" on '
            '"Ishihara Colour Blindness Test - Plate 3" with Machado (2010) '
            'model and pre-computed matrix.')
plot_cvd_simulation_Machado2009(
    ISHIHARA_CBT_3_IMAGE, 'Protanomaly', 0.5,
    text_parameters={'text': 'Protanomaly - 50%', 'color': 'black'})

print('\n')

M_a = colour.anomalous_trichromacy_matrix_Machado2009(
    colour.LMS_CMFS.get('Stockman & Sharpe 2 Degree Cone Fundamentals'),
    colour.DISPLAYS_RGB_PRIMARIES['Typical CRT Brainard 1997'],