Beispiel #1
0
freqs = .4*np.pi + 0.01*(np.random.rand(means.shape[0])-.5)
phases = 2*np.pi*np.random.rand(means.shape[0])
offsets = 0.3*np.vstack([np.sin(f*X+p).T for f,p in zip(freqs,phases)])
Y = means + offsets + np.random.randn(*means.shape)*0.05


#construct full model
Kf = kern.rbf(1,0.01,0.001)
Ky1 = kern.rbf(1,0.1,0.001)
Ky2 = kern.white(1,0.01)
Ky = Ky1 + Ky2
m = MOHGP(X,Kf,Ky,Y, K=Nclust, prior_Z = 'DP', alpha=alpha)
m.ensure_default_constraints()
m.checkgrad(verbose=1)

m.randomize()
m.optimize()
m.systematic_splits()
m.systematic_splits()
m.plot(1,1,1,0,0,1)

#construct model without structure
#give it a fighting chance by normalising signals first
Y = Y.copy()
Y -= Y.mean(1)[:,None]
Y /= Y.std(1)[:,None]
Kf = kern.rbf(1,0.01,0.001)
Ky = kern.white(1,0.01)
m2 = MOHGP(X,Kf,Ky,Y, K=Nclust, prior_Z = 'DP', alpha=alpha)
m2.ensure_default_constraints()
m2.checkgrad(verbose=1)
Beispiel #2
0
#add a lower freq sin for the noise
freqs = .4 * np.pi + 0.01 * (np.random.rand(means.shape[0]) - .5)
phases = 2 * np.pi * np.random.rand(means.shape[0])
offsets = 0.3 * np.vstack([np.sin(f * X + p).T for f, p in zip(freqs, phases)])
Y = means + offsets + np.random.randn(*means.shape) * 0.05

#construct full model
Kf = kern.rbf(1, 0.01, 0.001)
Ky1 = kern.rbf(1, 0.1, 0.001)
Ky2 = kern.white(1, 0.01)
Ky = Ky1 + Ky2
m = MOHGP(X, Kf, Ky, Y, K=Nclust, prior_Z='DP', alpha=alpha)
m.ensure_default_constraints()
m.checkgrad(verbose=1)

m.randomize()
m.optimize()
m.systematic_splits()
m.systematic_splits()
m.plot(1, 1, 1, 0, 0, 1)

#construct model without structure
#give it a fighting chance by normalising signals first
Y = Y.copy()
Y -= Y.mean(1)[:, None]
Y /= Y.std(1)[:, None]
Kf = kern.rbf(1, 0.01, 0.001)
Ky = kern.white(1, 0.01)
m2 = MOHGP(X, Kf, Ky, Y, K=Nclust, prior_Z='DP', alpha=alpha)
m2.ensure_default_constraints()
m2.checkgrad(verbose=1)