def test_forward_propagation(self): """ check if the matrix multiplications in forward propagationin are working properly. """ training_dataset = DataSet(os.path.join(combivep_settings.COMBIVEP_CENTRAL_TEST_DATASET_DIR, 'dummy_training_dataset')) mlp = Mlp(training_dataset.n_features, seed=20) out = mlp.forward_propagation(training_dataset) self.assertEqual(round(out[0][0], 4), 0.5022, msg='forward propagation does not functional properly')
def test_fix_random_weight(self): """ check if the initial random values of weight matrixes are likely to be random. """ training_dataset = DataSet(os.path.join(combivep_settings.COMBIVEP_CENTRAL_TEST_DATASET_DIR, 'dummy_training_dataset')) mlp = Mlp(training_dataset.n_features, seed=20) self.assertEqual(round(mlp.get_weights1()[0][1], 4), 0.0090, msg='MLP is not ready for test because the random value is not fix') self.assertEqual(round(mlp.get_weights1()[0][0], 4), 0.0059, msg='MLP is not ready for test because the random value is not fix')
def __init__(self, training_dataset, validation_dataset, seed=combivep_settings.DEFAULT_SEED, n_hidden_nodes=combivep_settings.DEFAULT_HIDDEN_NODES, figure_dir=combivep_settings.DEFAULT_FIGURE_DIR): Mlp.__init__(self, training_dataset.n_features, seed=seed, n_hidden_nodes=n_hidden_nodes) self.__training_dataset = training_dataset self.__validation_dataset = validation_dataset self.__n_hidden_nodes = n_hidden_nodes self.__figure_dir = figure_dir
def test_forward_propagation(self): """ check if the matrix multiplications in forward propagationin are working properly. """ training_data = DataSet(os.path.join(cbv_const.CBV_SAMPLE_DATASET_DIR, 'dummy_training_dataset')) mlp = Mlp(training_data.n_features, seed=20) out = mlp.forward_propagation(training_data) self.assertEqual(round(out[0][0], 4), 0.5022, msg="forward propagation doesn't function properly")
def test_one_round_forward_backward_weight_update(self): """ to see if can correctly run one round of "forward", "backward" and "weight update" """ training_dataset = DataSet(os.path.join(combivep_settings.COMBIVEP_CENTRAL_TEST_DATASET_DIR, 'dummy_training_dataset')) mlp = Mlp(training_dataset.n_features, seed=20) mlp.forward_propagation(training_dataset) mlp.backward_propagation(training_dataset) weights1, weights2 = mlp.weight_update(training_dataset) self.assertEqual(round(weights1[0][0], 4), 0.0059, msg='one round of forward propagation, backward propagation and weight update, does not functional properly')
def test_one_round_forward_backward_weight_update(self): """ to see if can correctly run one round of "forward", "backward" and "weight update" """ training_data = DataSet(os.path.join(cbv_const.CBV_SAMPLE_DATASET_DIR, 'dummy_training_dataset')) mlp = Mlp(training_data.n_features, seed=20) mlp.forward_propagation(training_data) mlp.backward_propagation(training_data) weights1, weights2 = mlp.weight_update(training_data) self.assertEqual(round(weights1[0][0], 4), 0.0059, msg='one round of forward propagation, backward propagation and weight update, does not function properly')