Beispiel #1
0
def get_net_parameters(opt):
    net = DD()
    net.model = opt.model
    net.nL = opt.num_layers
    net.nH = opt.num_heads
    net.hSize = opt.hidden_dim
    net.edpt = opt.embedding_dropout
    net.adpt = opt.attention_dropout
    net.rdpt = opt.residual_dropout
    net.odpt = opt.output_dropout
    net.pt = opt.pretrain
    net.afn = opt.activation

    # how to intialize parameters
    # format is gauss+{}+{}.format(mean, std)
    # n = the default initialization pytorch
    net.init = opt.init

    return net
Beispiel #2
0
def get_parameters(opt, exp_type="model"):
    params = DD()
    params.net = DD()

    params.mle = 0
    params.dataset = opt.dataset

    params.net = get_net_parameters(opt)
    params.train = get_training_parameters(opt)

    params.model = params.net.model
    params.exp = opt.exp

    params.data = get_data_parameters(opt, params.exp, params.dataset)
    params.eval = get_eval_parameters(opt, params.data.get("categories", None))

    meta = DD()

    params.trainer = opt.trainer

    meta.iterations = int(opt.iterations)
    meta.cycle = opt.cycle
    params.cycle = opt.cycle
    params.iters = int(opt.iterations)

    global toy
    toy = opt.toy

    global do_gen
    do_gen = opt.do_gen

    global save
    save = opt.save

    global test_save
    test_save = opt.test_save

    global save_strategy
    save_strategy = opt.save_strategy

    print(params)
    return params, meta