Beispiel #1
0
def make_poisson_pmf(lam, high, step=1):
    pmf = Pmf()
    for k in range(0, high + 1, step):
        p = eval_poisson_pmf(lam, k)
        pmf.set(k, p)
    pmf.normalize()
    return pmf
Beispiel #2
0
def make_mixture(meta_pmf, name='mix'):
    mix = Pmf(name=name)
    for pmf, p1 in meta_pmf.iter_items():
        for x, p2 in pmf.iter_items():
            mix.incr(x, p1 * p2)
    mix.normalize()
    return mix
Beispiel #3
0
 def conditional(self, i, j, val, name=''):
     pmf = Pmf(name=name)
     for vs, prob in self.iter_items():
         if vs[j] != val:
             continue
         pmf.incr(vs[i], prob)
     pmf.normalize()
     return pmf
Beispiel #4
0
def make_gaussian_pmf(mu, sigma, num_sigmas, n=101):
    pmf = Pmf()
    low = mu - num_sigmas * sigma
    high = mu + num_sigmas * sigma
    for x in np.linspace(low, high, n):
        p = scipy.stats.norm.pdf(x, mu, sigma)
        pmf.set(x, p)
    pmf.normalize()
    return pmf
Beispiel #5
0
def make_uniform_pmf(low, high):
    pmf = Pmf()
    for x in make_range(low, high):
        pmf.set(x, 1)
    pmf.normalize()
    return pmf
Beispiel #6
0
def make_pmf_from_list(values, name=''):
    pmf = Pmf(name=name)
    for value in values:
        pmf.incr(value)
    pmf.normalize()
    return pmf