Beispiel #1
0
    def plots(self, models, keys):
        """
        Plots.
        """

        labels = [
            'Normal', 'OffAdvTrain', 'OnAdvTrain', 'STNAugm', 'STNAdvTrain',
            'OnClassAdvTrain'
        ]
        if self.args.learned_on_data:
            labels += ['OnDataAdvTrain']
        norms = [1, 2, float('inf')]
        attacks = keys

        for model in models:
            log('[Experiment] %s' % model)
            for attack in attacks:
                n = 2
                errors = self.results[model][:, :, 1].flatten()
                distances = self.results['%s_%s' %
                                         (model, attack)][:, :, 0, n,
                                                          2].flatten()
                successes = self.results['%s_%s' %
                                         (model, attack)][:, :, 0, 0,
                                                          0].flatten()

                distance_slope, _, distance_correlation, distance_p_value, _ = scipy.stats.linregress(
                    errors, distances)
                success_slope, _, success_correlation, success_p_value, _ = scipy.stats.linregress(
                    errors, successes)

                log('[Experiment]     %s: distance=%g (corr=%g, p=%g) success=%g (corr=%g, p=%g)'
                    % (attack, distance_slope, distance_correlation,
                       distance_p_value, success_slope, success_correlation,
                       success_p_value))

        # Standard error
        x = numpy.stack([self.statistics[model][:, 0] for model in models],
                        axis=1).T
        y = numpy.stack([self.statistics[model][:, 1] for model in models],
                        axis=1).T
        plot_file = paths.image_file('0_evaluation/plot_error')
        plot.line(plot_file, x, y, labels)
        latex_file = paths.latex_file('0_evaluation/latex_error')
        latex.line(latex_file, x, y, labels)

        for attack in attacks:
            # Success rate
            x = numpy.stack([self.statistics[model][:, 0] for model in models],
                            axis=1).T
            y = numpy.stack([
                self.statistics['%s_%s' % (model, attack)][:, 0, 0, 0]
                for model in models
            ],
                            axis=1).T
            plot_file = paths.image_file('0_evaluation/plot_%s_success_rate' %
                                         attack)
            plot.line(plot_file, x, y, labels)
            latex_file = paths.latex_file(
                '0_evaluation/latex_%s_success_rate' % attack)
            latex.line(latex_file, x, y, labels)

            # L_inf Distances Off-Manifold
            n = 2
            x = numpy.stack([self.statistics[model][:, 0] for model in models],
                            axis=1).T
            y = numpy.stack([
                self.statistics['%s_%s' % (model, attack)][:, 0, n, 2]
                for model in models
            ],
                            axis=1).T
            plot_file = paths.image_file('0_evaluation/plot_%s_distance_%g' %
                                         (attack, norms[n]))
            plot.line(plot_file, x, y, labels)
            latex_file = paths.latex_file('0_evaluation/latex_%s_distance_%g' %
                                          (attack, norms[n]))
            latex.line(latex_file, x, y, labels)

            # Error and success rate
            c = numpy.stack(
                [self.results[model][:, :, 0].flatten() for model in models],
                axis=1).T
            x = numpy.stack(
                [self.results[model][:, :, 1].flatten() for model in models],
                axis=1).T
            y = numpy.stack([
                self.results['%s_%s' %
                             (model, attack)][:, :, 0, 0, 0].flatten()
                for model in models
            ],
                            axis=1).T
            plot_file = paths.image_file(
                '0_evaluation/plot_%s_error_success_rate' % attack)
            plot.scatter2(plot_file, x, y, labels)
            latex_file = paths.latex_file(
                '0_evaluation/latex_%s_error_success_rate' % attack)
            latex.scatter2(latex_file, x, y, labels, c)

            # Error and success rate as line
            c = numpy.stack([self.statistics[model][:, 0] for model in models],
                            axis=1).T
            x = numpy.stack([self.statistics[model][:, 1] for model in models],
                            axis=1).T
            y = numpy.stack([
                self.statistics['%s_%s' % (model, attack)][:, 0, 0, 0]
                for model in models
            ],
                            axis=1).T
            plot_file = paths.image_file(
                '0_evaluation/plot_%s_error_success_rate_line' % attack)
            plot.line(plot_file, x, y, labels)
            latex_file = paths.latex_file(
                '0_evaluation/latex_%s_error_success_rate_line' % attack)
            latex.line(latex_file, x, y, labels, c)
    def plots(self, models, keys):
        """
        Plots.
        """

        labels = [
            'Normal', 'OffAdvTrain', 'OnAdvTrain', 'STNAugm', 'STNAdvTrain',
            'OnClassAdvTrain'
        ]
        norms = [1, 2, float('inf')]

        attack_types = ['madry', 'cw']
        attacks = []
        attacks.append('off')
        attacks.append('on')
        attacks.append('learned_on_class')

        # Standard error
        x = numpy.stack([self.statistics[model][:, 0] for model in models],
                        axis=1).T
        y = numpy.stack([self.statistics[model][:, 1] for model in models],
                        axis=1).T
        plot_file = paths.image_file('0_evaluation/plot_error')
        plot.line(plot_file, x, y, labels)
        latex_file = paths.latex_file('0_evaluation/latex_error')
        latex.line(latex_file, x, y, labels)

        for a in range(len(attack_types)):
            for attack in attacks:
                # Success rate
                x = numpy.stack(
                    [self.statistics[model][:, 0] for model in models],
                    axis=1).T
                y = numpy.stack([
                    self.statistics['%s_%s' % (model, attack)][:, a, 0, 0]
                    for model in models
                ],
                                axis=1).T
                plot_file = paths.image_file(
                    '0_evaluation/plot_%s_%s_success_rate' %
                    (attack_types[a], attack))
                plot.line(plot_file, x, y, labels)
                latex_file = paths.latex_file(
                    '0_evaluation/latex_%s_%s_success_rate' %
                    (attack_types[a], attack))
                latex.line(latex_file, x, y, labels)

                # L_inf Distances Off-Manifold
                n = 2
                x = numpy.stack(
                    [self.statistics[model][:, 0] for model in models],
                    axis=1).T
                y = numpy.stack([
                    self.statistics['%s_%s' % (model, attack)][:, a, n, 2]
                    for model in models
                ],
                                axis=1).T
                plot_file = paths.image_file(
                    '0_evaluation/plot_%s_%s_distance_%g' %
                    (attack_types[a], attack, norms[n]))
                plot.line(plot_file, x, y, labels)
                latex_file = paths.latex_file(
                    '0_evaluation/latex_%s_%s_distance_%g' %
                    (attack_types[a], attack, norms[n]))
                latex.line(latex_file, x, y, labels)

                # Error and success rate
                c = numpy.stack([
                    self.results[model][:, :, 0].flatten() for model in models
                ],
                                axis=1).T
                x = numpy.stack([
                    self.results[model][:, :, 1].flatten() for model in models
                ],
                                axis=1).T
                y = numpy.stack([
                    self.results['%s_%s' %
                                 (model, attack)][:, :, a, 0, 0].flatten()
                    for model in models
                ],
                                axis=1).T
                plot_file = paths.image_file(
                    '0_evaluation/plot_%s_%s_error_success_rate' %
                    (attack_types[a], attack))
                plot.scatter2(plot_file, x, y, labels)
                latex_file = paths.latex_file(
                    '0_evaluation/latex_%s_%s_error_success_rate' %
                    (attack_types[a], attack))
                latex.scatter2(latex_file, x, y, labels, c)

                # Error and success rate as line
                c = numpy.stack(
                    [self.statistics[model][:, 0] for model in models],
                    axis=1).T
                x = numpy.stack(
                    [self.statistics[model][:, 1] for model in models],
                    axis=1).T
                y = numpy.stack([
                    self.statistics['%s_%s' % (model, attack)][:, a, 0, 0]
                    for model in models
                ],
                                axis=1).T
                plot_file = paths.image_file(
                    '0_evaluation/plot_%s_%s_error_success_rate_line' %
                    (attack_types[a], attack))
                plot.line(plot_file, x, y, labels)
                latex_file = paths.latex_file(
                    '0_evaluation/latex_%s_%s_error_success_rate_line' %
                    (attack_types[a], attack))
                latex.line(latex_file, x, y, labels, c)