def compute_ppca(self):
        """
        Compute PPCA.
        """

        success = numpy.logical_and(self.success >= 0, self.accuracy)
        log('[Detection] %d valid attacked samples' % numpy.sum(success))

        nearest_neighbor_images = self.nearest_neighbor_images.reshape(self.nearest_neighbor_images.shape[0], -1)
        nearest_neighbor_images = nearest_neighbor_images[:self.args.n_fit]
        
        perturbations = self.perturbations.reshape(self.perturbations.shape[0], -1)
        test_images = self.test_images.reshape(self.test_images.shape[0], -1)
        pure_perturbations = perturbations - test_images

        ppca = PPCA(n_components=self.args.n_pca)
        ppca.fit(nearest_neighbor_images)
        log('[Experiment] computed PPCA on nearest neighbor images')

        reconstructed_test_images = ppca.inverse_transform(ppca.transform(test_images))
        reconstructed_perturbations = ppca.inverse_transform(ppca.transform(perturbations))
        reconstructed_pure_perturbations = ppca.inverse_transform(ppca.transform(pure_perturbations))

        self.distances['test'] = numpy.average(numpy.multiply(reconstructed_test_images - test_images, reconstructed_test_images - test_images), axis=1)
        self.distances['perturbation'] = numpy.average(numpy.multiply(reconstructed_perturbations - perturbations, reconstructed_perturbations - perturbations), axis=1)
        self.distances['true'] = numpy.average(numpy.multiply(reconstructed_pure_perturbations - pure_perturbations, reconstructed_pure_perturbations - pure_perturbations), axis=1)

        self.angles['test'] = numpy.rad2deg(common.numpy.angles(test_images.T, reconstructed_test_images.T))
        self.angles['perturbation'] = numpy.rad2deg(common.numpy.angles(reconstructed_perturbations.T, perturbations.T))
        self.angles['true'] = numpy.rad2deg(common.numpy.angles(reconstructed_pure_perturbations.T, pure_perturbations.T))

        self.distances['test'] = self.distances['test'][success]
        self.distances['perturbation'] = self.distances['perturbation'][success]
        self.distances['true'] = self.distances['true'][success]
    def compute_normalized_ppca(self):
        """
        Compute PPCA.
        """

        nearest_neighbor_images = self.nearest_neighbor_images.reshape(self.nearest_neighbor_images.shape[0], -1)
        nearest_neighbor_images = nearest_neighbor_images[:self.args.n_fit]

        perturbations = self.perturbations.reshape(self.perturbations.shape[0], -1)
        test_images = self.test_images.reshape(self.test_images.shape[0], -1)
        pure_perturbations = perturbations - test_images

        nearest_neighbor_images_norms = numpy.linalg.norm(nearest_neighbor_images, ord=2, axis=1)
        perturbations_norms = numpy.linalg.norm(perturbations, ord=2, axis=1)
        test_images_norms = numpy.linalg.norm(test_images, ord=2, axis=1)
        pure_perturbations_norms = numpy.linalg.norm(pure_perturbations, ord=2, axis=1)

        success = numpy.logical_and(numpy.logical_and(self.success >= 0, self.accuracy), pure_perturbations_norms > 1e-4)
        log('[Detection] %d valid attacked samples' % numpy.sum(success))

        perturbations_norms = perturbations_norms[success]
        test_images_norms = test_images_norms[success]
        pure_perturbations_norms = pure_perturbations_norms[success]

        perturbations = perturbations[success]
        test_images = test_images[success]
        pure_perturbations = pure_perturbations[success]

        nearest_neighbor_images /= numpy.repeat(nearest_neighbor_images_norms.reshape(-1, 1), nearest_neighbor_images.shape[1], axis=1)
        perturbations /= numpy.repeat(perturbations_norms.reshape(-1, 1), perturbations.shape[1], axis=1)
        test_images /= numpy.repeat(test_images_norms.reshape(-1, 1), test_images.shape[1], axis=1)
        pure_perturbations /= numpy.repeat(pure_perturbations_norms.reshape(-1, 1), pure_perturbations.shape[1], axis=1)

        assert not numpy.any(nearest_neighbor_images != nearest_neighbor_images)
        assert not numpy.any(perturbations != perturbations)
        assert not numpy.any(test_images != test_images)
        assert not numpy.any(pure_perturbations != pure_perturbations)

        ppca = PPCA(n_components=self.args.n_pca)
        ppca.fit(nearest_neighbor_images)
        log('[Experiment] computed PPCA on nearest neighbor images')

        reconstructed_test_images = ppca.inverse_transform(ppca.transform(test_images))
        reconstructed_perturbations = ppca.inverse_transform(ppca.transform(perturbations))
        reconstructed_pure_perturbations = ppca.inverse_transform(ppca.transform(pure_perturbations))
        
        #self.probabilities['test'] = ppca.marginal(test_images)
        #self.probabilities['perturbation'] = ppca.marginal(perturbations)
        #self.probabilities['true'] = ppca.marginal(pure_perturbations)

        self.distances['test'] = numpy.average(numpy.multiply(reconstructed_test_images - test_images, reconstructed_test_images - test_images), axis=1)
        self.distances['perturbation'] = numpy.average(numpy.multiply(reconstructed_perturbations - perturbations, reconstructed_perturbations - perturbations), axis=1)
        self.distances['true'] = numpy.average(numpy.multiply(reconstructed_pure_perturbations - pure_perturbations, reconstructed_pure_perturbations - pure_perturbations), axis=1)

        self.angles['test'] = numpy.rad2deg(common.numpy.angles(test_images.T, reconstructed_test_images.T))
        self.angles['perturbation'] = numpy.rad2deg(common.numpy.angles(reconstructed_perturbations.T, perturbations.T))
        self.angles['true'] = numpy.rad2deg(common.numpy.angles(reconstructed_pure_perturbations.T, pure_perturbations.T))
    def compute_local_pca(self):
        """
        Compute PCA.
        """

        success = numpy.logical_and(self.success >= 0, self.accuracy)
        log('[Detection] %d valid attacked samples' % numpy.sum(success))

        nearest_neighbor_images = self.nearest_neighbor_images.reshape(self.nearest_neighbor_images.shape[0], -1)
        nearest_neighbor_images = nearest_neighbor_images[:self.args.n_fit]

        perturbations = self.perturbations.reshape(self.perturbations.shape[0], -1)
        test_images = self.test_images.reshape(self.test_images.shape[0], -1)
        pure_perturbations = perturbations - test_images

        nearest_neighbors_indices = self.compute_nearest_neighbors(perturbations)

        self.distances['true'] = numpy.zeros((success.shape[0]))
        self.distances['test'] = numpy.zeros((success.shape[0]))
        self.distances['perturbation'] = numpy.zeros((success.shape[0]))

        self.angles['true'] = numpy.zeros((success.shape[0]))
        self.angles['test'] = numpy.zeros((success.shape[0]))
        self.angles['perturbation'] = numpy.zeros((success.shape[0]))

        for n in range(pure_perturbations.shape[0]):
            if success[n]:
                nearest_neighbors = nearest_neighbor_images[nearest_neighbors_indices[n, :]]
                nearest_neighbors = numpy.concatenate((nearest_neighbors, test_images[n].reshape(1, -1)), axis=0)

                pca = sklearn.decomposition.IncrementalPCA(n_components=self.args.n_pca)
                pca.fit(nearest_neighbors)

                reconstructed_test_images = pca.inverse_transform(pca.transform(test_images[n].reshape(1, -1)))
                reconstructed_perturbations = pca.inverse_transform(pca.transform(perturbations[n].reshape(1, -1)))
                reconstructed_pure_perturbations = pca.inverse_transform(pca.transform(pure_perturbations[n].reshape(1, -1)))

                self.distances['test'][n] = numpy.average(numpy.multiply(reconstructed_test_images - test_images[n], reconstructed_test_images - test_images[n]), axis=1)
                self.distances['perturbation'][n] = numpy.average(numpy.multiply(reconstructed_perturbations - perturbations[n], reconstructed_perturbations - perturbations[n]), axis=1)
                self.distances['true'][n] = numpy.average(numpy.multiply(reconstructed_pure_perturbations - pure_perturbations[n], reconstructed_pure_perturbations - pure_perturbations[n]), axis=1)

                self.angles['test'][n] = numpy.rad2deg(common.numpy.angles(reconstructed_test_images.T, test_images[n].T))
                self.angles['perturbation'][n] = numpy.rad2deg(common.numpy.angles(reconstructed_perturbations.T, perturbations[n].T))
                self.angles['true'][n] = numpy.rad2deg(common.numpy.angles(reconstructed_pure_perturbations.T, pure_perturbations[n].T))

                log('[Detection] %d: true distance=%g angle=%g' % (n, self.distances['true'][n], self.angles['true'][n]))
                log('[Detection] %d: perturbation distance=%g angle=%g' % (n, self.distances['perturbation'][n], self.angles['perturbation'][n]))
                log('[Detection] %d: test distance=%g angle=%g' % (n, self.distances['test'][n], self.angles['test'][n]))

        self.distances['test'] = self.distances['test'][success]
        self.distances['perturbation'] = self.distances['perturbation'][success]
        self.distances['true'] = self.distances['true'][success]
Beispiel #4
0
    def compute_statistics(self):
        """
        Compute statistics based on distances.
        """

        num_attempts = self.perturbations.shape[0]

        perturbations = numpy.swapaxes(self.perturbations, 0, 1)
        perturbations = perturbations.reshape(
            (perturbations.shape[0] * perturbations.shape[1],
             perturbations.shape[2]))
        success = numpy.swapaxes(self.success, 0, 1)
        success = success.reshape((success.shape[0] * success.shape[1]))

        probabilities = numpy.swapaxes(self.probabilities, 0, 1)
        probabilities = probabilities.reshape(
            (probabilities.shape[0] * probabilities.shape[1], -1))
        confidences = numpy.max(probabilities, 1)

        perturbation_probabilities = self.test_probabilities[:self.success.
                                                             shape[1]]
        perturbation_probabilities = numpy.repeat(perturbation_probabilities,
                                                  num_attempts,
                                                  axis=0)
        perturbation_confidences = numpy.max(perturbation_probabilities, 1)

        probability_ratios = confidences / perturbation_confidences

        raw_overall_success = success >= 0
        log('[Testing] %d valid attacks' % numpy.sum(raw_overall_success))

        # For off-manifold attacks this should not happen, but save is save.
        if not numpy.any(raw_overall_success):
            for type in [
                    'raw_success', 'raw_iteration', 'raw_roc',
                    'raw_confidence_weighted_success', 'raw_confidence',
                    'raw_ratios'
            ]:
                self.results[type] = 0
            if self.args.results_file:
                utils.write_pickle(self.args.results_file, self.results)
                log('[Testing] wrote %s' % self.args.results_file)
            log('[Testing] no successful attacks found, no plots')
            return

        #
        # We compute some simple statistics:
        # - raw success rate: fraction of successful attack without considering epsilon
        # - corrected success rate: fraction of successful attacks within epsilon-ball
        # - raw average perturbation: average distance to original samples (for successful attacks)
        # - corrected average perturbation: average distance to original samples for perturbations
        #   within epsilon-ball (for successful attacks).
        # These statistics can also be computed per class.
        # And these statistics are computed with respect to three norms.

        if self.args.plot_directory and utils.display():
            iterations = success[raw_overall_success]
            x = numpy.arange(numpy.max(iterations) + 1)
            y = numpy.bincount(iterations)
            plot_file = os.path.join(self.args.plot_directory, 'iterations')
            plot.bar(plot_file,
                     x,
                     y,
                     title='Distribution of Iterations of Successful Attacks',
                     xlabel='Number of Iterations',
                     ylabel='Count')
            log('[Testing] wrote %s' % plot_file)

            plot_file = os.path.join(self.args.plot_directory, 'probabilities')
            plot.histogram(plot_file, confidences[raw_overall_success], 50)
            log('[Testing] wrote %s' % plot_file)

            plot_file = os.path.join(self.args.plot_directory,
                                     'probability_ratios')
            plot.histogram(plot_file, probability_ratios, 50)
            log('[Testing] wrote %s' % plot_file)

            plot_file = os.path.join(self.args.plot_directory,
                                     'test_probabilities')
            plot.histogram(
                plot_file, self.test_probabilities[
                    numpy.arange(self.test_probabilities.shape[0]),
                    self.test_codes], 50)
            log('[Testing] wrote %s' % plot_file)

        y_true = numpy.concatenate(
            (numpy.zeros(confidences.shape[0]),
             numpy.ones(perturbation_confidences.shape[0])))
        y_score = numpy.concatenate((confidences, perturbation_confidences))
        roc_auc_score = sklearn.metrics.roc_auc_score(y_true, y_score)

        self.results['raw_roc'] = roc_auc_score
        self.results['raw_confidence_weighted_success'] = numpy.sum(
            confidences[raw_overall_success]) / numpy.sum(
                perturbation_confidences)
        self.results['raw_confidence'] = numpy.mean(
            probabilities[raw_overall_success])
        self.results['raw_ratios'] = numpy.mean(
            probability_ratios[raw_overall_success])
        self.results['raw_success'] = numpy.sum(
            raw_overall_success) / success.shape[0]
        self.results['raw_iteration'] = numpy.average(
            success[raw_overall_success])

        if self.args.results_file:
            utils.write_pickle(self.args.results_file, self.results)
            log('[Testing] wrote %s' % self.args.results_file)
Beispiel #5
0
    def compute_statistics(self):
        """
        Compute statistics based on distances.
        """

        # That's the basis for all computation as we only want to consider successful attacks
        # on test samples that were correctly classified.
        raw_overall_success = numpy.logical_and(self.success >= 0, self.accuracy)

        # Important check, for on-manifold attack this will happen if the manifold is small and the model very accurate!
        if not numpy.any(raw_overall_success):
            for n in range(len(self.norms)):
                for type in ['raw_success', 'raw_iteration', 'raw_average', 'raw_image']:
                    self.results[n][type] = 0
                for type in ['raw_class_success', 'raw_class_average', 'raw_class_image']:
                    self.results[n][type] = numpy.zeros((self.N_class))
            if self.args.results_file:
                utils.write_pickle(self.args.results_file, self.results)
                log('[Testing] wrote %s' % self.args.results_file)
            return

        #
        # Compute nearest neighbor statistics in image space.
        #

        if self.args.plot_directory and self.args.plot_manifolds and utils.display():
            log('[Testing] computing nearest neighbor ...')
            nearest_neighbors_indices = self.compute_nearest_neighbors(self.perturbation_images[raw_overall_success])
            pure_perturbations = self.test_images[raw_overall_success] - self.perturbation_images[raw_overall_success]
            pure_perturbations_norm = numpy.linalg.norm(pure_perturbations, ord=2, axis=1)
            for k in range(10):
                direction = self.perturbation_images[raw_overall_success] - self.train_images[nearest_neighbors_indices[:, k]]
                direction_norm = numpy.linalg.norm(direction, ord=2, axis=1)
                dot_products = numpy.einsum('ij,ij->i', direction, pure_perturbations)
                dot_product_norms = numpy.multiply(pure_perturbations_norm, direction_norm)
                dot_products, dot_product_norms = dot_products[dot_product_norms > 10**-8], dot_product_norms[dot_product_norms > 10**-8]
                dot_products /= dot_product_norms
                dot_products = numpy.degrees(numpy.arccos(dot_products))

                # matplotlib's hsitogram plots give weird error if there are NaN values, so simple check:
                if dot_products.shape[0] > 0 and not numpy.any(dot_products != dot_products):
                    plot_file = os.path.join(self.args.plot_directory, 'dot_products_nn%d' % k)
                    plot.histogram(plot_file, dot_products, 100, xmin=numpy.min(dot_products), xmax=numpy.max(dot_products),
                                  title='Dot Products Between Adversarial Perturbations and Direction to Nearest Neighbor %d' % k,
                                  xlabel='Dot Product', ylabel='Count')
                    log('[Testing] wrote %s' % plot_file)

        #
        # We compute some simple statistics:
        # - raw success rate: fraction of successful attack without considering epsilon
        # - corrected success rate: fraction of successful attacks within epsilon-ball
        # - raw average perturbation: average distance to original samples (for successful attacks)
        # - corrected average perturbation: average distance to original samples for perturbations
        #   within epsilon-ball (for successful attacks).
        # These statistics can also be computed per class.
        # And these statistics are computed with respect to three norms.

        if self.args.plot_directory and utils.display():
            iterations = self.success[raw_overall_success]
            x = numpy.arange(numpy.max(iterations) + 1)
            y = numpy.bincount(iterations)
            plot_file = os.path.join(self.args.plot_directory, 'iterations')
            plot.bar(plot_file, x, y,
                    title='Distribution of Iterations of Successful Attacks', xlabel='Number of Iterations', ylabel='Count')
            log('[Testing] wrote %s' % plot_file)

        reference_perturbations = numpy.zeros(self.perturbations.shape)
        if self.args.N_theta > 4:
            reference_perturbations[:, 4] = 1

        for n in range(len(self.norms)):
            norm = self.norms[n]
            delta = numpy.linalg.norm(self.perturbations - reference_perturbations, norm, axis=1)
            image_delta = numpy.linalg.norm(self.test_images - self.perturbation_images, norm, axis=1)

            if self.args.plot_directory and utils.display():
                plot_file = os.path.join(self.args.plot_directory, 'distances_l%g' % norm)
                plot.histogram(plot_file, delta[raw_overall_success], 50, title='Distribution of $L_{%g}$ Distances of Successful Attacks' % norm,
                              xlabel='Distance', ylabel='Count')
                log('[Testing] wrote %s' % plot_file)

            debug_accuracy = numpy.sum(self.accuracy) / self.accuracy.shape[0]
            debug_attack_fraction = numpy.sum(raw_overall_success) / numpy.sum(self.success >= 0)
            debug_test_fraction = numpy.sum(raw_overall_success) / numpy.sum(self.accuracy)
            log('[Testing] attacked mode accuracy: %g' % debug_accuracy)
            log('[Testing] only %g of successful attacks are valid' % debug_attack_fraction)
            log('[Testing] only %g of correct samples are successfully attacked' % debug_test_fraction)

            N_accuracy = numpy.sum(self.accuracy)
            self.results[n]['raw_success'] = numpy.sum(raw_overall_success) / N_accuracy

            self.results[n]['raw_iteration'] = numpy.average(self.success[raw_overall_success])

            self.results[n]['raw_average'] = numpy.average(delta[raw_overall_success]) if numpy.any(raw_overall_success) else 0

            self.results[n]['raw_image'] = numpy.average(image_delta[raw_overall_success]) if numpy.any(raw_overall_success) else 0

            raw_class_success = numpy.zeros((self.N_class, self.perturbation_codes.shape[0]), bool)
            corrected_class_success = numpy.zeros((self.N_class, self.perturbation_codes.shape[0]), bool)

            self.results[n]['raw_class_success'] = numpy.zeros((self.N_class))

            self.results[n]['raw_class_average'] = numpy.zeros((self.N_class))

            self.results[n]['raw_class_image'] = numpy.zeros((self.N_class))

            for c in range(self.N_class):
                N_samples = numpy.sum(self.accuracy[self.perturbation_codes == c].astype(int))
                if N_samples <= 0:
                    continue;

                raw_class_success[c] = numpy.logical_and(raw_overall_success, self.perturbation_codes == c)

                self.results[n]['raw_class_success'][c] = numpy.sum(raw_class_success[c]) / N_samples

                if numpy.any(raw_class_success[c]):
                    self.results[n]['raw_class_average'][c] = numpy.average(delta[raw_class_success[c].astype(bool)])
                if numpy.any(corrected_class_success[c]):
                    self.results[n]['raw_class_image'][c] = numpy.average(image_delta[raw_class_success[c].astype(bool)])

        if self.args.results_file:
            utils.write_pickle(self.args.results_file, self.results)
            log('[Testing] wrote %s' % self.args.results_file)
    def compute_nn(self, inclusive=False):
        """
        Test detector.
        """

        success = numpy.logical_and(self.success >= 0, self.accuracy)
        log('[Detection] %d valid attacked samples' % numpy.sum(success))

        nearest_neighbor_images = self.nearest_neighbor_images.reshape(self.nearest_neighbor_images.shape[0], -1)
        perturbations = self.perturbations.reshape(self.perturbations.shape[0], -1)
        test_images = self.test_images.reshape(self.test_images.shape[0], -1)

        nearest_neighbors_indices = self.compute_nearest_neighbors(perturbations)
        pure_perturbations = perturbations - test_images
        log('[Detection] computed nearest neighbors for perturbations')

        self.distances['true'] = numpy.zeros((success.shape[0]))
        self.distances['test'] = numpy.zeros((success.shape[0]))
        self.distances['perturbation'] = numpy.zeros((success.shape[0]))

        self.angles['true'] = numpy.zeros((success.shape[0]))
        self.angles['test'] = numpy.zeros((success.shape[0]))
        self.angles['perturbation'] = numpy.zeros((success.shape[0]))

        for n in range(pure_perturbations.shape[0]):
            if success[n]:
                nearest_neighbors = nearest_neighbor_images[nearest_neighbors_indices[n, :]]

                if inclusive:
                    nearest_neighbors = numpy.concatenate((nearest_neighbors, test_images[n].reshape(1, -1)), axis=0)
                    nearest_neighbor_mean = test_images[n]
                else:
                    nearest_neighbor_mean = numpy.average(nearest_neighbors, axis=0)

                nearest_neighbor_basis = nearest_neighbors - nearest_neighbor_mean

                relative_perturbation = perturbations[n] - nearest_neighbor_mean
                relative_test_image = test_images[n] - nearest_neighbor_mean

                if inclusive:
                    assert numpy.allclose(relative_test_image, nearest_neighbor_basis[-1])

                nearest_neighbor_vectors = numpy.stack((
                    pure_perturbations[n],
                    relative_perturbation,
                    relative_test_image
                ), axis=1)

                nearest_neighbor_projections = common.numpy.project_orthogonal(nearest_neighbor_basis.T, nearest_neighbor_vectors)
                assert nearest_neighbor_vectors.shape[0] == nearest_neighbor_projections.shape[0]
                assert nearest_neighbor_vectors.shape[1] == nearest_neighbor_projections.shape[1]

                angles = numpy.rad2deg(common.numpy.angles(nearest_neighbor_vectors, nearest_neighbor_projections))
                distances = numpy.linalg.norm(nearest_neighbor_vectors - nearest_neighbor_projections, ord=2, axis=0)

                assert distances.shape[0] == 3
                assert angles.shape[0] == 3

                self.distances['true'][n] = distances[0]
                self.distances['perturbation'][n] = distances[1]
                self.distances['test'][n] = distances[2]

                self.angles['true'][n] = angles[0]
                self.angles['perturbation'][n] = angles[1]
                self.angles['test'][n] = angles[2]

                log('[Detection] %d: true distance=%g angle=%g' % (n, self.distances['true'][n], self.angles['true'][n]))
                log('[Detection] %d: perturbation distance=%g angle=%g' % (n, self.distances['perturbation'][n], self.angles['perturbation'][n]))
                log('[Detection] %d: test distance=%g angle=%g' % (n, self.distances['test'][n], self.angles['test'][n]))

        self.distances['true'] = self.distances['true'][success]
        self.distances['test'] = self.distances['test'][success]
        self.distances['perturbation'] = self.distances['perturbation'][success]

        self.angles['true'] = self.angles['true'][success]
        self.angles['test'] = self.angles['test'][success]
        self.angles['perturbation'] = self.angles['perturbation'][success]

        if inclusive:
            self.distances['test'][:] = 0
            self.angles['test'][:] = 0