Beispiel #1
0
class DDPG(object):
    def __init__(self, actor, critic, memory, observation_shape, action_shape, param_noise=None, action_noise=None,
                 gamma=0.99, tau=0.001, normalize_returns=False, enable_popart=False, normalize_observations=True,
                 batch_size=128, observation_range=(-5., 5.), action_range=(-1., 1.), return_range=(-np.inf, np.inf),
                 critic_l2_reg=0., actor_lr=1e-4, critic_lr=1e-3, clip_norm=None, reward_scale=1.):
        # Inputs.
        self.obs0 = tf.placeholder(tf.float32, shape=(None,) + observation_shape, name='obs0')
        self.obs1 = tf.placeholder(tf.float32, shape=(None,) + observation_shape, name='obs1')
        self.terminals1 = tf.placeholder(tf.float32, shape=(None, 1), name='terminals1')
        self.rewards = tf.placeholder(tf.float32, shape=(None, 1), name='rewards')
        self.actions = tf.placeholder(tf.float32, shape=(None,) + action_shape, name='actions')
        self.critic_target = tf.placeholder(tf.float32, shape=(None, 1), name='critic_target')
        self.param_noise_stddev = tf.placeholder(tf.float32, shape=(), name='param_noise_stddev')

        # Parameters.
        self.gamma = gamma
        self.tau = tau
        self.memory = memory
        self.normalize_observations = normalize_observations
        self.normalize_returns = normalize_returns
        self.action_noise = action_noise
        self.param_noise = param_noise
        self.action_range = action_range
        self.return_range = return_range
        self.observation_range = observation_range
        self.critic = critic
        self.actor = actor
        self.actor_lr = actor_lr
        self.critic_lr = critic_lr
        self.clip_norm = clip_norm
        self.enable_popart = enable_popart
        self.reward_scale = reward_scale
        self.batch_size = batch_size
        self.stats_sample = None
        self.critic_l2_reg = critic_l2_reg

        # Observation normalization.
        if self.normalize_observations:
            with tf.variable_scope('obs_rms'):
                self.obs_rms = RunningMeanStd(shape=observation_shape)
        else:
            self.obs_rms = None
        normalized_obs0 = tf.clip_by_value(normalize(self.obs0, self.obs_rms),
                                           self.observation_range[0], self.observation_range[1])
        normalized_obs1 = tf.clip_by_value(normalize(self.obs1, self.obs_rms),
                                           self.observation_range[0], self.observation_range[1])

        # Return normalization.
        if self.normalize_returns:
            with tf.variable_scope('ret_rms'):
                self.ret_rms = RunningMeanStd()
        else:
            self.ret_rms = None

        # Create target networks.
        target_actor = copy(actor)
        target_actor.name = 'target_actor'
        self.target_actor = target_actor
        target_critic = copy(critic)
        target_critic.name = 'target_critic'
        self.target_critic = target_critic

        # Create networks and core TF parts that are shared across setup parts.
        self.actor_tf = actor(normalized_obs0)
        self.normalized_critic_tf = critic(normalized_obs0, self.actions)
        self.critic_tf = denormalize(
            tf.clip_by_value(self.normalized_critic_tf, self.return_range[0], self.return_range[1]), self.ret_rms)
        self.normalized_critic_with_actor_tf = critic(normalized_obs0, self.actor_tf, reuse=True)
        self.critic_with_actor_tf = denormalize(
            tf.clip_by_value(self.normalized_critic_with_actor_tf, self.return_range[0], self.return_range[1]),
            self.ret_rms)
        Q_obs1 = denormalize(target_critic(normalized_obs1, target_actor(normalized_obs1)), self.ret_rms)
        self.target_Q = self.rewards + (1. - self.terminals1) * gamma * Q_obs1

        # Set up parts.
        if self.param_noise is not None:
            self.setup_param_noise(normalized_obs0)
        self.setup_actor_optimizer()
        self.setup_critic_optimizer()
        if self.normalize_returns and self.enable_popart:
            self.setup_popart()
        self.setup_stats()
        self.setup_target_network_updates()

    def setup_target_network_updates(self):
        actor_init_updates, actor_soft_updates = get_target_updates(self.actor.vars, self.target_actor.vars, self.tau)
        critic_init_updates, critic_soft_updates = get_target_updates(self.critic.vars, self.target_critic.vars,
                                                                      self.tau)
        self.target_init_updates = [actor_init_updates, critic_init_updates]
        self.target_soft_updates = [actor_soft_updates, critic_soft_updates]

    def setup_param_noise(self, normalized_obs0):
        assert self.param_noise is not None

        # Configure perturbed actor.
        param_noise_actor = copy(self.actor)
        param_noise_actor.name = 'param_noise_actor'
        self.perturbed_actor_tf = param_noise_actor(normalized_obs0)
        logger.info('setting up param noise')
        self.perturb_policy_ops = get_perturbed_actor_updates(self.actor, param_noise_actor, self.param_noise_stddev)

        # Configure separate copy for stddev adoption.
        adaptive_param_noise_actor = copy(self.actor)
        adaptive_param_noise_actor.name = 'adaptive_param_noise_actor'
        adaptive_actor_tf = adaptive_param_noise_actor(normalized_obs0)
        self.perturb_adaptive_policy_ops = get_perturbed_actor_updates(self.actor, adaptive_param_noise_actor,
                                                                       self.param_noise_stddev)
        self.adaptive_policy_distance = tf.sqrt(tf.reduce_mean(tf.square(self.actor_tf - adaptive_actor_tf)))

    def setup_actor_optimizer(self):
        logger.info('setting up actor optimizer')
        self.actor_loss = -tf.reduce_mean(self.critic_with_actor_tf)
        actor_shapes = [var.get_shape().as_list() for var in self.actor.trainable_vars]
        actor_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in actor_shapes])
        logger.info('  actor shapes: {}'.format(actor_shapes))
        logger.info('  actor params: {}'.format(actor_nb_params))
        self.actor_grads = U.flatgrad(self.actor_loss, self.actor.trainable_vars, clip_norm=self.clip_norm)
        self.actor_optimizer = Adam(var_list=self.actor.trainable_vars,
                                    beta1=0.9, beta2=0.999, epsilon=1e-08)

    def setup_critic_optimizer(self):
        logger.info('setting up critic optimizer')
        normalized_critic_target_tf = tf.clip_by_value(normalize(self.critic_target, self.ret_rms),
                                                       self.return_range[0], self.return_range[1])
        self.critic_loss = tf.reduce_mean(tf.square(self.normalized_critic_tf - normalized_critic_target_tf))
        if self.critic_l2_reg > 0.:
            critic_reg_vars = [var for var in self.critic.trainable_vars if
                               'kernel' in var.name and 'output' not in var.name]
            for var in critic_reg_vars:
                logger.info('  regularizing: {}'.format(var.name))
            logger.info('  applying l2 regularization with {}'.format(self.critic_l2_reg))
            critic_reg = tc.layers.apply_regularization(
                tc.layers.l2_regularizer(self.critic_l2_reg),
                weights_list=critic_reg_vars
            )
            self.critic_loss += critic_reg
        critic_shapes = [var.get_shape().as_list() for var in self.critic.trainable_vars]
        critic_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in critic_shapes])
        logger.info('  critic shapes: {}'.format(critic_shapes))
        logger.info('  critic params: {}'.format(critic_nb_params))
        self.critic_grads = U.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm)
        self.critic_optimizer = Adam(var_list=self.critic.trainable_vars,
                                     beta1=0.9, beta2=0.999, epsilon=1e-08)

    def setup_popart(self):
        # See https://arxiv.org/pdf/1602.07714.pdf for details.
        self.old_std = tf.placeholder(tf.float32, shape=[1], name='old_std')
        new_std = self.ret_rms.std
        self.old_mean = tf.placeholder(tf.float32, shape=[1], name='old_mean')
        new_mean = self.ret_rms.mean

        self.renormalize_Q_outputs_op = []
        for vs in [self.critic.output_vars, self.target_critic.output_vars]:
            assert len(vs) == 2
            M, b = vs
            assert 'kernel' in M.name
            assert 'bias' in b.name
            assert M.get_shape()[-1] == 1
            assert b.get_shape()[-1] == 1
            self.renormalize_Q_outputs_op += [M.assign(M * self.old_std / new_std)]
            self.renormalize_Q_outputs_op += [b.assign((b * self.old_std + self.old_mean - new_mean) / new_std)]

    def setup_stats(self):
        ops = []
        names = []

        if self.normalize_returns:
            ops += [self.ret_rms.mean, self.ret_rms.std]
            names += ['ret_rms_mean', 'ret_rms_std']

        if self.normalize_observations:
            ops += [tf.reduce_mean(self.obs_rms.mean), tf.reduce_mean(self.obs_rms.std)]
            names += ['obs_rms_mean', 'obs_rms_std']

        ops += [tf.reduce_mean(self.critic_tf)]
        names += ['reference_Q_mean']
        ops += [reduce_std(self.critic_tf)]
        names += ['reference_Q_std']

        ops += [tf.reduce_mean(self.critic_with_actor_tf)]
        names += ['reference_actor_Q_mean']
        ops += [reduce_std(self.critic_with_actor_tf)]
        names += ['reference_actor_Q_std']

        ops += [tf.reduce_mean(self.actor_tf)]
        names += ['reference_action_mean']
        ops += [reduce_std(self.actor_tf)]
        names += ['reference_action_std']

        if self.param_noise:
            ops += [tf.reduce_mean(self.perturbed_actor_tf)]
            names += ['reference_perturbed_action_mean']
            ops += [reduce_std(self.perturbed_actor_tf)]
            names += ['reference_perturbed_action_std']

        self.stats_ops = ops
        self.stats_names = names

    def pi(self, obs, apply_noise=True, compute_Q=True):
        if self.param_noise is not None and apply_noise:
            actor_tf = self.perturbed_actor_tf
        else:
            actor_tf = self.actor_tf
        feed_dict = {self.obs0: [obs]}
        if compute_Q:
            action, q = self.sess.run([actor_tf, self.critic_with_actor_tf], feed_dict=feed_dict)
        else:
            action = self.sess.run(actor_tf, feed_dict=feed_dict)
            q = None
        action = action.flatten()
        if self.action_noise is not None and apply_noise:
            noise = self.action_noise()
            assert noise.shape == action.shape
            action += noise
        action = np.clip(action, self.action_range[0], self.action_range[1])
        return action, q

    def store_transition(self, obs0, action, reward, obs1, terminal1):
        reward *= self.reward_scale
        self.memory.append(obs0, action, reward, obs1, terminal1)
        if self.normalize_observations:
            self.obs_rms.update(np.array([obs0]))

    def train(self):
        # Get a batch.
        batch = self.memory.sample(batch_size=self.batch_size)

        if self.normalize_returns and self.enable_popart:
            old_mean, old_std, target_Q = self.sess.run([self.ret_rms.mean, self.ret_rms.std, self.target_Q],
                                                        feed_dict={
                                                            self.obs1: batch['obs1'],
                                                            self.rewards: batch['rewards'],
                                                            self.terminals1: batch['terminals1'].astype('float32'),
                                                        })
            self.ret_rms.update(target_Q.flatten())
            self.sess.run(self.renormalize_Q_outputs_op, feed_dict={
                self.old_std: np.array([old_std]),
                self.old_mean: np.array([old_mean]),
            })
        else:
            target_Q = self.sess.run(self.target_Q, feed_dict={
                self.obs1: batch['obs1'],
                self.rewards: batch['rewards'],
                self.terminals1: batch['terminals1'].astype('float32'),
            })

        # Get all gradients and perform a synced update.
        ops = [self.actor_grads, self.actor_loss, self.critic_grads, self.critic_loss]
        actor_grads, actor_loss, critic_grads, critic_loss = self.sess.run(ops, feed_dict={
            self.obs0: batch['obs0'],
            self.actions: batch['actions'],
            self.critic_target: target_Q,
        })
        self.actor_optimizer.update(actor_grads, stepsize=self.actor_lr)
        self.critic_optimizer.update(critic_grads, stepsize=self.critic_lr)

        return critic_loss, actor_loss

    def initialize(self, sess):
        self.sess = sess
        self.sess.run(tf.global_variables_initializer())
        self.sess.run(self.target_init_updates)

    def update_target_net(self):
        self.sess.run(self.target_soft_updates)

    def get_stats(self):
        if self.stats_sample is None:
            # Get a sample and keep that fixed for all further computations.
            # This allows us to estimate the change in value for the same set of inputs.
            self.stats_sample = self.memory.sample(batch_size=self.batch_size)
        values = self.sess.run(self.stats_ops, feed_dict={
            self.obs0: self.stats_sample['obs0'],
            self.actions: self.stats_sample['actions'],
        })

        names = self.stats_names[:]
        assert len(names) == len(values)
        stats = dict(zip(names, values))

        if self.param_noise is not None:
            stats = {**stats, **self.param_noise.get_stats()}

        return stats

    def adapt_param_noise(self):
        if self.param_noise is None:
            return 0.

        # Perturb a separate copy of the policy to adjust the scale for the next "real" perturbation.
        batch = self.memory.sample(batch_size=self.batch_size)
        self.sess.run(self.perturb_adaptive_policy_ops, feed_dict={
            self.param_noise_stddev: self.param_noise.current_stddev,
        })
        distance = self.sess.run(self.adaptive_policy_distance, feed_dict={
            self.obs0: batch['obs0'],
            self.param_noise_stddev: self.param_noise.current_stddev,
        })

        self.param_noise.adapt(distance)
        return distance

    def reset(self):
        # Reset internal state after an episode is complete.
        if self.action_noise is not None:
            self.action_noise.reset()
        if self.param_noise is not None:
            self.sess.run(self.perturb_policy_ops, feed_dict={
                self.param_noise_stddev: self.param_noise.current_stddev,
            })
Beispiel #2
0
def main():

    parser = argparse.ArgumentParser()

    parser.add_argument('--D', '-d', type=int, default=8, help='Dimension of feature vector')
    parser.add_argument('--T', '-t', type=int, default=2, help='Max step of aggregation')
    parser.add_argument('--epoch', '-e', type=int, default=100, help='Number of training dataset')
    parser.add_argument('--batch', '-b', type=int, default=256, help='batch size')
    parser.add_argument('--flag', '-f', action='store_true', help='make prediction file')

    args = parser.parse_args()

    train_H, train_y, train_node_size = get_train()

    seed = 1996

    train_H, train_y, val_H, val_y, train_node_size, val_node_size = shuffle_split(train_H, train_y, train_node_size, split_size=0.7, seed=seed)

    # feature dimension
    D = args.D

    # step size
    T = args.T

    # learning rate
    alpha = 0.015

    # epoch size
    max_epoch = args.epoch

    # batch size
    batch_size = args.batch

    # get step per epoch
    train_size = len(train_H)
    iter_per_epoch = train_size//batch_size if (train_size%batch_size) == 0 else (train_size//batch_size)+1

    make_pred = args.flag

    ## make feature vector(train)
    train_x = get_feature(D, train_H, train_node_size)

    ## make feature vector(validation)
    val_x = get_feature(D, val_H, val_node_size)

    model = GNN(D, T)
    optimizer = Adam(alpha=alpha, beta1=0.9, beta2=0.999, eps=1e-8)

    train_loss_list = []
    train_acc_list = []
    val_loss_list = []
    val_acc_list = []

    for epoch in range(max_epoch):
        np.random.seed(int(epoch*1234))
        shuffle_idx = np.random.permutation(train_H.shape[0])
        train_H = train_H[shuffle_idx]
        train_x = train_x[shuffle_idx]
        train_y = train_y[shuffle_idx]
        for num in range(iter_per_epoch):
            if train_size > (num+1)*batch_size:
                batch_H = train_H[num*batch_size:(num+1)*batch_size]
                batch_x = train_x[num*batch_size:(num+1)*batch_size]
                batch_y = train_y[num*batch_size:(num+1)*batch_size]
            else:
                batch_H = train_H[num*(batch_size):]
                batch_x = train_x[num*(batch_size):]
                batch_y = train_y[num*(batch_size):]
        
            # get batch gradient and update parameters
            batch_grads = None
            for idx in range(len(batch_H)):
                grad = model.get_gradient(batch_x[idx], batch_H[idx], batch_y[idx])
                if batch_grads == None:
                    batch_grads = {}
                    for key, val in grad.items():
                        batch_grads[key] = np.zeros_like(val)
                for key in grad.keys():
                    batch_grads[key] += (grad[key] / len(batch_H))
            optimizer.update(model.params, batch_grads)
        
        # train loss and average accuracy
        loss = 0
        train_pred = np.zeros((len(train_y), 1))
        for idx in range(len(train_H)):
            loss += model.loss(train_x[idx], train_H[idx], train_y[idx]) / len(train_H)
            predict = 0 if model.predict(train_x[idx], train_H[idx]) < 1/2 else 1
            train_pred[idx] = predict
        train_score = avg_acc(train_y, train_pred)
        
        # validation loss and average accuracy
        val_loss = 0
        val_pred = np.zeros((len(val_y), 1))
        for idx in range(len(val_H)):
            val_loss += model.loss(val_x[idx], val_H[idx], val_y[idx]) / len(val_H)
            predict = 0 if model.predict(val_x[idx], val_H[idx]) < 1/2 else 1
            val_pred[idx] = predict
        val_score = avg_acc(val_y, val_pred)

        print('epoch:{} loss:{:.5f} val_loss:{:.5f} avg_acc:{:.5f} val_avg_acc:{:.5f}'.format(epoch+1, loss, val_loss, train_score, val_score))
        train_loss_list.append(loss)
        val_loss_list.append(val_loss)
        train_acc_list.append(train_score)
        val_acc_list.append(val_score)
    
    fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10,4))
    x = np.arange(len(train_loss_list))
    ax1.plot(x, train_loss_list, label='train')
    x = np.arange(len(val_loss_list))
    ax1.plot(x, val_loss_list, label='validation')
    ax1.legend()
    ax1.set_xlabel('epoch')
    ax1.set_ylabel('loss')

    x = np.arange(len(train_acc_list))
    ax2.plot(x, train_acc_list, label='train')
    x = np.arange(len(val_acc_list))
    ax2.plot(x, val_acc_list, label='validation')
    ax2.legend()
    ax2.set_xlabel('epoch')
    ax2.set_ylabel('average accuracy')

    fig.savefig('src/graph/GNN_Adam.png')
    plt.close()

    if make_pred:
        ## predict test data
        test_H, test_node_size = get_test()

        ## make feature vector(test)
        test_x = get_feature(D, test_H, test_node_size)

        with open('prediction.txt', mode='w') as f:
            for idx in range(len(test_node_size)):
                predict = 0 if model.predict(test_x[idx], test_H[idx]) < 1/2 else 1
                f.write('{}'.format(predict) + '\n')
Beispiel #3
0
trainer.train()
"""
epoch_num = 0
start = time.time()
for i in range(train_num):
    batch_mask = np.random.choice(x_train.shape[0], batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]
    batch_mask_test = np.random.choice(x_test.shape[0], batch_size)
    x_test_batch = x_test[batch_mask_test]
    t_test_batch = t_test[batch_mask_test]
    
    grad = network.gradient(x_batch, t_batch)
    
    # パラメータの更新
    optimizer.update(network.params, grad)
    #for key in grad.keys():
    #    network.params[key] -= learning_rate * grad[key]
    
    # 損失関数計算
    loss = network.loss(x_batch, t_batch)
    train_loss_list.append(loss)
    
    train_acc = network.accuracy(x_batch, t_batch)
    test_acc = network.accuracy(x_test_batch, t_test_batch)
    
    train_acc_list.append(train_acc)
    test_acc_list.append(test_acc)
    
    print(".", end="", flush=True)