def check_files():
    import os
    from common import paths

    def check_file(filepath):
        if not os.path.exists(filepath):
            print('File %s not found.' % filepath)

    check_file(paths.database_file())
    check_file(paths.images_file())
    check_file(paths.theta_file())
    check_file(paths.codes_file())

    check_file(paths.test_images_file())
    check_file(paths.train_images_file())
    check_file(paths.test_theta_file())
    check_file(paths.train_theta_file())
    check_file(paths.test_codes_file())
    check_file(paths.train_codes_file())

    check_file(paths.emnist_test_images_file())
    check_file(paths.emnist_train_images_file())
    check_file(paths.emnist_test_labels_file())
    check_file(paths.emnist_train_labels_file())

    check_file(paths.fashion_test_images_file())
    check_file(paths.fashion_train_images_file())
    check_file(paths.fashion_test_labels_file())
    check_file(paths.fashion_train_labels_file())

    check_file(paths.celeba_test_images_file())
    check_file(paths.celeba_train_images_file())
    check_file(paths.celeba_test_labels_file())
    check_file(paths.celeba_train_labels_file())
    def get_parser(self):
        """
        Get parser.

        :return: parser
        :rtype: argparse.ArgumentParser
        """

        parser = argparse.ArgumentParser(
            description='Create HDF5 file of rendered font letters and digits.'
        )
        parser.add_argument('-database_file',
                            default=paths.database_file(),
                            help='HDF5 file containing prototype images.',
                            type=str)
        parser.add_argument('-codes_file',
                            default=paths.codes_file(),
                            help='HDF5 file containing codes.',
                            type=str)
        parser.add_argument('-theta_file',
                            default=paths.theta_file(),
                            help='HDF5 file containing transformations.',
                            type=str)
        parser.add_argument('-batch_size',
                            default=32,
                            help='Batch size.',
                            type=int)
        parser.add_argument('-no_gpu', dest='use_gpu', action='store_false')
        parser.add_argument('-images_file',
                            default=paths.images_file(),
                            help='HDF5 file containing transformed images.',
                            type=str)
        parser.set_defaults(use_gpu=True)
        return parser
    def get_parser(self):
        """
        Get parser.

        :return: parser
        :rtype: argparse.ArgumentParser
        """

        parser = argparse.ArgumentParser(description='Attack decoder and classifier.')
        parser.add_argument('-database_file', default=paths.database_file(), help='HDF5 file containing font prototype images.', type=str)
        parser.add_argument('-test_codes_file', default=paths.test_codes_file(), help='HDF5 file containing codes.', type=str)
        parser.add_argument('-test_theta_file', default=paths.test_theta_file(), help='HDF5 file containing transformations.', type=str)
        parser.add_argument('-classifier_file', default=paths.state_file('classifier'), help='Snapshot state file of classifier.', type=str)
        parser.add_argument('-accuracy_file', default=paths.results_file('decoder/accuracy'), help='Correctly classified test samples of classifier.', type=str)
        parser.add_argument('-perturbations_file', default=paths.results_file('decoder/perturbations'), help='HDF5 file containing perturbations.', type=str)
        parser.add_argument('-success_file', default=paths.results_file('decoder/success'), help='HDF5 file containing perturbations.', type=str)
        parser.add_argument('-log_file', default=paths.log_file('decoder/attacks'), help='Log file.', type=str)
        parser.add_argument('-attack', default='UntargetedBatchL2ClippedGradientDescent', help='Attack to try.', type=str)
        parser.add_argument('-objective', default='UntargetedF6', help='Objective to use.', type=str)
        parser.add_argument('-max_attempts', default=1, help='Maximum number of attempts per attack.', type=int)
        parser.add_argument('-max_samples', default=20*128, help='How many samples from the test set to attack.', type=int)
        parser.add_argument('-batch_size', default=128, help='Batch size of attack.', type=int)
        parser.add_argument('-epsilon', default=0.1, help='Epsilon allowed for attacks.', type=float)
        parser.add_argument('-c_0', default=0., help='Weight of norm.', type=float)
        parser.add_argument('-c_1', default=0.1, help='Weight of bound, if not enforced through clipping or reparameterization.', type=float)
        parser.add_argument('-c_2', default=0.5, help='Weight of objective.', type=float)
        parser.add_argument('-max_iterations', default=100, help='Number of iterations for attack.', type=int)
        parser.add_argument('-max_projections', default=5, help='Number of projections for alternating projection.', type=int)
        parser.add_argument('-base_lr', default=0.005, help='Learning rate for attack.', type=float)
        parser.add_argument('-no_gpu', dest='use_gpu', action='store_false')
        parser.add_argument('-no_label_leaking', default=False, dest='no_label_leaking', action='store_true')
        parser.add_argument('-on_manifold', default=False, dest='on_manifold', action='store_true')
        parser.add_argument('-initialize_zero', default=False, action='store_true', help='Initialize attack at zero.')

        # Some network parameters.
        parser.add_argument('-network_architecture', default='standard', help='Classifier architecture to use.', type=str)
        parser.add_argument('-network_activation', default='relu', help='Activation function to use.', type=str)
        parser.add_argument('-network_no_batch_normalization', default=False, help='Do not use batch normalization.', action='store_true')
        parser.add_argument('-network_channels', default=16, help='Channels of first convolutional layer, afterwards channels are doubled.', type=int)
        parser.add_argument('-network_dropout', default=False, action='store_true', help='Whether to use dropout.')
        parser.add_argument('-network_units', default='1024,1024,1024,1024', help='Units for MLP.')

        return parser
Beispiel #4
0
    def get_parser(self):
        """
        Get parser.

        :return: parser
        :rtype: argparse.ArgumentParser
        """

        parser = argparse.ArgumentParser(
            description='Attack decoder and classifier.')
        parser.add_argument('-database_file',
                            default=paths.database_file(),
                            help='HDF5 file containing font prototype images.',
                            type=str)
        parser.add_argument('-test_theta_file',
                            default=paths.test_theta_file(),
                            help='HDF5 file for thetas.',
                            type=str)
        parser.add_argument('-test_codes_file',
                            default=paths.test_codes_file(),
                            help='HDF5 file containing codes.',
                            type=str)
        parser.add_argument(
            '-perturbations_file',
            default=paths.results_file('decoder/perturbations'),
            help='HDF5 file containing perturbations.',
            type=str)
        parser.add_argument(
            '-perturbation_images_file',
            default=paths.results_file('decoder/perturbation_images'),
            help='HDF5 file for perturbation images.',
            type=str)
        parser.add_argument('-log_file',
                            default=paths.log_file('decoder/attacks'),
                            help='Log file.',
                            type=str)
        parser.add_argument('-batch_size',
                            default=128,
                            help='Batch size of attack.',
                            type=int)
        parser.add_argument('-no_gpu', dest='use_gpu', action='store_false')

        return parser
    def get_parser(self):
        """
        Get parser.

        :return: parser
        :rtype: argparse.ArgumentParser
        """

        parser = argparse.ArgumentParser(
            description='Inspect transformed images.')
        parser.add_argument('-database_file',
                            default=paths.database_file(),
                            type=str)
        parser.add_argument('-codes_file',
                            default=paths.codes_file(),
                            type=str)
        parser.add_argument('-theta_file',
                            default=paths.theta_file(),
                            type=str)
        parser.add_argument('-images_file',
                            default=paths.images_file(),
                            type=str)
        parser.add_argument('-train_codes_file',
                            default=paths.train_codes_file(),
                            type=str)
        parser.add_argument('-test_codes_file',
                            default=paths.test_codes_file(),
                            type=str)
        parser.add_argument('-train_theta_file',
                            default=paths.train_theta_file(),
                            type=str)
        parser.add_argument('-test_theta_file',
                            default=paths.test_theta_file(),
                            type=str)
        parser.add_argument('-train_images_file',
                            default=paths.train_images_file(),
                            type=str)
        parser.add_argument('-test_images_file',
                            default=paths.test_images_file(),
                            type=str)

        return parser
    def get_parser(self):
        """
        Get parser.

        :return: parser
        :rtype: argparse.ArgumentParser
        """

        parser = argparse.ArgumentParser(description='Detect attacks on classifier.')
        parser.add_argument('-mode', default='svd', help='Mode.', type=str)
        parser.add_argument('-database_file', default=paths.database_file(), help='HDF5 file containing font prototype images.', type=str)
        parser.add_argument('-test_codes_file', default=paths.test_codes_file(), help='HDF5 file codes dataset.', type=str)
        parser.add_argument('-test_theta_file', default=paths.test_theta_file(), help='HDF5 file containing transformations.', type=str)
        parser.add_argument('-train_images_file', default=paths.train_images_file(), help='HDF5 file containing dataset.', type=str)
        parser.add_argument('-test_images_file', default=paths.test_images_file(), help='HDF5 file containing dataset.', type=str)
        parser.add_argument('-perturbations_file', default=paths.results_file('classifier/perturbations'), help='HDF5 file containing perturbations.', type=str)
        parser.add_argument('-success_file', default=paths.results_file('classifier/success'), help='HDF5 file containing success indicators.', type=str)
        parser.add_argument('-accuracy_file', default=paths.results_file('classifier/accuracy'), help='HDF5 file containing accuracy indicators.', type=str)
        parser.add_argument('-batch_size', default=64, help='Batch size.', type=int)
        parser.add_argument('-no_gpu', dest='use_gpu', action='store_false')
        parser.add_argument('-pre_pca', default=20, help='PCA dimensionality reduction ebfore NN.', type=int)
        parser.add_argument('-n_nearest_neighbors', default=50, help='Number of NNs to consider.', type=int)
        parser.add_argument('-n_pca', default=10, help='Number of NNs to consider.', type=int)
        parser.add_argument('-n_fit', default=100000, help='Training images to fit.', type=int)
        parser.add_argument('-plot_directory', default=paths.experiment_dir('classifier/detection'), help='Plot directory.', type=str)
        parser.add_argument('-max_samples', default=1000, help='Number of samples.', type=int)

        # Some decoder parameters.
        parser.add_argument('-decoder_files', default=paths.state_file('decoder'), help='Decoder files.', type=str)
        parser.add_argument('-latent_space_size', default=10, help='Size of latent space.', type=int)
        parser.add_argument('-decoder_architecture', default='standard', help='Architecture to use.', type=str)
        parser.add_argument('-decoder_activation', default='relu', help='Activation function to use.', type=str)
        parser.add_argument('-decoder_no_batch_normalization', default=False, help='Do not use batch normalization.', action='store_true')
        parser.add_argument('-decoder_channels', default=16, help='Channels of first convolutional layer, afterwards channels are doubled.', type=int)
        parser.add_argument('-decoder_dropout', default=False, action='store_true', help='Whether to use dropout.')
        parser.add_argument('-decoder_units', default='1024,1024,1024,1024', help='Units for MLP.')

        return parser
Beispiel #7
0
    def get_parser(self):
        """
        Get parser.

        :return: parser
        :rtype: argparse.ArgumentParser
        """

        parser = argparse.ArgumentParser(
            description='Create HDF5 file of rendered font letters and digits.'
        )
        parser.add_argument('-database_file',
                            default=paths.database_file(),
                            help='HDF5 file created.',
                            type=str)
        parser.add_argument('-size',
                            default=24,
                            help='Width and height of images.',
                            type=int)
        parser.add_argument('-characters',
                            default='ABCDEFGHIJ',
                            help='Characters for generate prototypes for.')

        return parser
    def get_parser(self):
        """
        Get parser.

        :return: parser
        :rtype: argparse.ArgumentParser
        """

        parser = argparse.ArgumentParser(
            description='Visualize attacks on decoder and classifier.')
        parser.add_argument('-database_file',
                            default=paths.database_file(),
                            help='HDF5 file containing font prototype images.',
                            type=str)
        parser.add_argument('-test_theta_file',
                            default=paths.test_theta_file(),
                            help='HDF5 file containing transformations.',
                            type=str)
        parser.add_argument('-test_codes_file',
                            default=paths.test_codes_file(),
                            help='HDF5 file containing codes.',
                            type=str)
        parser.add_argument('-test_images_file',
                            default=paths.test_images_file(),
                            help='HDF5 file containing images.',
                            type=str)
        parser.add_argument('-label_index',
                            default=2,
                            help='Label index.',
                            type=int)
        parser.add_argument('-classifier_file',
                            default=paths.state_file('classifier'),
                            help='Snapshot state file of classifier.',
                            type=str)
        parser.add_argument(
            '-perturbations_file',
            default=paths.results_file('decoder/perturbations'),
            help='HDF5 file containing perturbations.',
            type=str)
        parser.add_argument('-success_file',
                            default=paths.results_file('decoder/success'),
                            help='HDF5 file containing perturbations.',
                            type=str)
        parser.add_argument(
            '-accuracy_file',
            default=paths.results_file('decoder/accuracy'),
            help='Correctly classified test samples of classifier.',
            type=str)
        parser.add_argument(
            '-output_directory',
            default=paths.experiment_dir('decoder/perturbations'),
            help='Directory to store visualizations.',
            type=str)
        parser.add_argument('-batch_size',
                            default=128,
                            help='Batch size of attack.',
                            type=int)
        parser.add_argument('-no_gpu', dest='use_gpu', action='store_false')

        # Some network parameters.
        parser.add_argument('-network_architecture',
                            default='standard',
                            help='Classifier architecture to use.',
                            type=str)
        parser.add_argument('-network_activation',
                            default='relu',
                            help='Activation function to use.',
                            type=str)
        parser.add_argument('-network_no_batch_normalization',
                            default=False,
                            help='Do not use batch normalization.',
                            action='store_true')
        parser.add_argument(
            '-network_channels',
            default=16,
            help=
            'Channels of first convolutional layer, afterwards channels are doubled.',
            type=int)
        parser.add_argument('-network_dropout',
                            default=False,
                            action='store_true',
                            help='Whether to use dropout.')
        parser.add_argument('-network_units',
                            default='1024,1024,1024,1024',
                            help='Units for MLP.')

        return parser
Beispiel #9
0
    def get_parser(self):
        """
        Get parser.

        :return: parser
        :rtype: argparse.ArgumentParser
        """

        parser = argparse.ArgumentParser(
            description='Test attacks on classifier.')
        parser.add_argument('-database_file',
                            default=paths.database_file(),
                            help='HDF5 file containing font prototype images.',
                            type=str)
        parser.add_argument('-test_images_file',
                            default=paths.test_images_file(),
                            help='HDF5 file containing dataset.',
                            type=str)
        parser.add_argument('-train_images_file',
                            default=paths.train_images_file(),
                            help='HDF5 file containing dataset.',
                            type=str)
        parser.add_argument('-test_theta_file',
                            default=paths.test_theta_file(),
                            help='HDF5 file containing dataset.',
                            type=str)
        parser.add_argument('-train_theta_file',
                            default=paths.train_theta_file(),
                            help='HDF5 file containing dataset.',
                            type=str)
        parser.add_argument('-test_codes_file',
                            default=paths.test_codes_file(),
                            help='HDF5 file containing labels.',
                            type=str)
        parser.add_argument(
            '-accuracy_file',
            default=paths.results_file('classifier/accuracy'),
            help='Correctly classified test samples of classifier.',
            type=str)
        parser.add_argument(
            '-perturbations_file',
            default=paths.results_file('decoder/perturbations'),
            help='HDF5 file containing perturbations.',
            type=str)
        parser.add_argument('-success_file',
                            default=paths.results_file('decoder/success'),
                            help='HDF5 file indicating attack success.',
                            type=str)
        parser.add_argument('-plot_directory',
                            default=paths.experiment_dir('decoder'),
                            help='Path to PNG plot file for success rate.',
                            type=str)
        parser.add_argument('-results_file',
                            default='',
                            help='Path to pickled results file.',
                            type=str)
        parser.add_argument('-batch_size',
                            default=128,
                            help='Batch size of attack.',
                            type=int)
        parser.add_argument('-plot_manifolds',
                            default=False,
                            action='store_true',
                            help='Whether to plot manifolds.')
        parser.add_argument('-no_gpu', dest='use_gpu', action='store_false')

        return parser
    def get_parser(self):
        """
        Get parser.

        :return: parser
        :rtype: argparse.ArgumentParser
        """

        parser = argparse.ArgumentParser(description='Train classifier.')
        parser.add_argument('-database_file',
                            default=paths.database_file(),
                            help='HDF5 file containing font prototype images.',
                            type=str)
        parser.add_argument('-train_images_file',
                            default=paths.train_images_file(),
                            help='HDF5 file containing dataset.',
                            type=str)
        parser.add_argument('-train_codes_file',
                            default=paths.train_codes_file(),
                            help='HDF5 file containing codes.',
                            type=str)
        parser.add_argument('-train_theta_file',
                            default=paths.train_theta_file(),
                            help='HDF5 file containing transformations.',
                            type=str)
        parser.add_argument('-test_images_file',
                            default=paths.test_images_file(),
                            help='HDF5 file containing dataset.',
                            type=str)
        parser.add_argument('-test_codes_file',
                            default=paths.test_codes_file(),
                            help='HDF5 file containing codes.',
                            type=str)
        parser.add_argument('-label_index',
                            default=2,
                            help='Column index in label file.',
                            type=int)
        parser.add_argument('-test_theta_file',
                            default=paths.test_theta_file(),
                            help='HDF5 file containing transformations.',
                            type=str)
        parser.add_argument(
            '-state_file',
            default=paths.state_file('robust_manifold_classifier'),
            help='Snapshot state file.',
            type=str)
        parser.add_argument(
            '-log_file',
            default=paths.log_file('robust_manifold_classifier'),
            help='Log file.',
            type=str)
        parser.add_argument(
            '-training_file',
            default=paths.results_file('robust_manifold_training'),
            help='Training statistics file.',
            type=str)
        parser.add_argument(
            '-testing_file',
            default=paths.results_file('robust_manifold_testing'),
            help='Testing statistics file.',
            type=str)
        parser.add_argument('-loss_file',
                            default=paths.image_file('loss'),
                            help='Loss plot file.',
                            type=str)
        parser.add_argument('-error_file',
                            default=paths.image_file('error'),
                            help='Error plot file.',
                            type=str)
        parser.add_argument(
            '-success_file',
            default=paths.image_file('robust_manifold_success'),
            help='Success rate plot file.',
            type=str)
        parser.add_argument('-gradient_file',
                            default='',
                            help='Gradient plot file.',
                            type=str)
        parser.add_argument(
            '-random_samples',
            default=False,
            action='store_true',
            help='Randomize the subsampling of the training set.')
        parser.add_argument('-training_samples',
                            default=-1,
                            help='Number of samples used for training.',
                            type=int)
        parser.add_argument('-test_samples',
                            default=-1,
                            help='Number of samples for validation.',
                            type=int)
        parser.add_argument('-validation_samples',
                            default=0,
                            help='Number of samples for validation.',
                            type=int)
        parser.add_argument('-early_stopping',
                            default=False,
                            action='store_true',
                            help='Use early stopping.')
        parser.add_argument('-attack_samples',
                            default=1000,
                            help='Samples to attack.',
                            type=int)
        parser.add_argument('-batch_size',
                            default=64,
                            help='Batch size.',
                            type=int)
        parser.add_argument('-epochs',
                            default=10,
                            help='Number of epochs.',
                            type=int)
        parser.add_argument('-weight_decay',
                            default=0.0001,
                            help='Weight decay importance.',
                            type=float)
        parser.add_argument('-logit_decay',
                            default=0,
                            help='Logit decay importance.',
                            type=float)
        parser.add_argument('-no_gpu', dest='use_gpu', action='store_false')
        parser.add_argument('-skip',
                            default=5,
                            help='Verbosity in iterations.',
                            type=int)
        parser.add_argument('-lr',
                            default=0.005,
                            type=float,
                            help='Base learning rate.')
        parser.add_argument('-lr_decay',
                            default=0.9,
                            type=float,
                            help='Learning rate decay.')
        parser.add_argument('-results_file',
                            default='',
                            help='Results file for evaluation.',
                            type=str)
        parser.add_argument('-debug_directory',
                            default='',
                            help='Debug directory.',
                            type=str)

        # Some network parameters.
        parser.add_argument('-network_architecture',
                            default='standard',
                            help='Classifier architecture to use.',
                            type=str)
        parser.add_argument('-network_activation',
                            default='relu',
                            help='Activation function to use.',
                            type=str)
        parser.add_argument('-network_no_batch_normalization',
                            default=False,
                            help='Do not use batch normalization.',
                            action='store_true')
        parser.add_argument(
            '-network_channels',
            default=16,
            help=
            'Channels of first convolutional layer, afterwards channels are doubled.',
            type=int)
        parser.add_argument('-network_dropout',
                            default=False,
                            action='store_true',
                            help='Whether to use dropout.')
        parser.add_argument('-network_units',
                            default='1024,1024,1024,1024',
                            help='Units for MLP.')

        # Attack parameters.
        parser.add_argument('-attack',
                            default='UntargetedBatchL2ClippedGradientDescent',
                            help='Attack to try.',
                            type=str)
        parser.add_argument('-objective',
                            default='UntargetedF6',
                            help='Objective to use.',
                            type=str)
        parser.add_argument('-epsilon',
                            default=1,
                            help='Epsilon allowed for attacks.',
                            type=float)
        parser.add_argument('-c_0',
                            default=0.,
                            help='Weight of norm.',
                            type=float)
        parser.add_argument(
            '-c_1',
            default=0.1,
            help=
            'Weight of bound, if not enforced through clipping or reparameterization.',
            type=float)
        parser.add_argument('-c_2',
                            default=0.5,
                            help='Weight of objective.',
                            type=float)
        parser.add_argument('-max_iterations',
                            default=10,
                            help='Number of iterations for attack.',
                            type=int)
        parser.add_argument(
            '-max_projections',
            default=5,
            help='Number of projections for alternating projection.',
            type=int)
        parser.add_argument('-base_lr',
                            default=0.005,
                            help='Learning rate for attack.',
                            type=float)
        parser.add_argument('-verbose',
                            action='store_true',
                            default=False,
                            help='Verbose attacks.')
        parser.add_argument('-anneal_epochs',
                            default=0,
                            help='Anneal iterations in the first epochs.',
                            type=int)

        # Variants.
        parser.add_argument('-full_variant',
                            default=False,
                            action='store_true',
                            help='100% variant.')
        parser.add_argument('-training_mode',
                            default=False,
                            action='store_true',
                            help='Training mode variant for attack.')

        return parser
Beispiel #11
0
    def get_parser(self):
        """
        Get parser.

        :return: parser
        :rtype: argparse.ArgumentParser
        """

        parser = argparse.ArgumentParser(description='Generate latent codes.')
        parser.add_argument('-database_file',
                            default=paths.database_file(),
                            help='HDF5 file created.',
                            type=str)
        parser.add_argument('-codes_file',
                            default=paths.codes_file(),
                            help='HDF5 file containing codes.',
                            type=str)
        parser.add_argument('-theta_file',
                            default=paths.theta_file(),
                            help='HDF5 file containing transformations.',
                            type=str)
        parser.add_argument(
            '-number_transformations',
            default=2,
            help=
            'Number of transformations, applied in this order: scale, rotation, translation in x, translation in y, shear in x and shear in y.',
            type=int)
        parser.add_argument(
            '-min_scale',
            default=0.9,
            help='Minimum scale (relative, with 1 being original scale).',
            type=float)
        parser.add_argument(
            '-max_scale',
            default=1.1,
            help='Maximum scale (relative, with 1 being original scale).',
            type=float)
        parser.add_argument('-min_rotation',
                            default=-math.pi / 4,
                            help='Minimum rotation (e.g., -math.pi).',
                            type=float)
        parser.add_argument('-max_rotation',
                            default=math.pi / 4,
                            help='Maximum rotation (e.g., math.pi).',
                            type=float)
        parser.add_argument(
            '-min_translation',
            default=-0.2,
            help='Minimum translation in both x and y (relative to size).',
            type=float)
        parser.add_argument(
            '-max_translation',
            default=0.2,
            help='Maximum translation in both x and y (relative to size).',
            type=float)
        parser.add_argument('-min_shear',
                            default=-0.5,
                            help='Minimum shear (relative to size).',
                            type=float)
        parser.add_argument('-max_shear',
                            default=0.5,
                            help='Maximum shear (relative to size).',
                            type=float)
        parser.add_argument('-min_color',
                            default=0.5,
                            help='Minimum color value, maximum is 1.',
                            type=float)
        parser.add_argument(
            '-multiplier',
            default=1000,
            help='How many times to multiply each font/letter.',
            type=int)
        return parser