def test_matmul_bn_relu_classifier(M: int = 3):
    """Test case for layer matmul class
    """
    N = 10
    D = 2
    W = weights.he(M, D + 1)
    optimizer = SGD(lr=TYPE_FLOAT(0.5))
    X, T, V = linear_separable_sectors(n=N, d=D, m=M)
    assert X.shape == (N, D)
    X, T = transform_X_T(X, T)

    def callback(W):
        """Dummy callback"""
        W

    profiler = cProfile.Profile()
    profiler.enable()

    train_matmul_bn_relu_classifier(
        N=N,
        D=D,
        M=M,
        X=X,
        T=T,
        W=W,
        log_loss_function=softmax_cross_entropy_log_loss,
        optimizer=optimizer,
        test_numerical_gradient=True,
        callback=callback)

    profiler.disable()
    profiler.print_stats(sort="cumtime")
def test_categorical_classifier(
        M: int = 3,
        log_loss_function: Callable = softmax_cross_entropy_log_loss):
    """Test case for layer matmul class
    """
    N = 10
    D = 2
    W = weights.he(M, D + 1)
    optimizer = SGD(lr=TYPE_FLOAT(0.1))
    X, T, V = linear_separable_sectors(n=N, d=D, m=M)
    assert X.shape == (N, D)
    X, T = transform_X_T(X, T)

    def callback(W):
        W

    profiler = cProfile.Profile()
    profiler.enable()

    train_binary_classifier(N=N,
                            D=D,
                            M=M,
                            X=X,
                            T=T,
                            W=W,
                            log_loss_function=log_loss_function,
                            optimizer=optimizer,
                            test_numerical_gradient=True,
                            log_level=logging.WARNING,
                            callback=callback)

    profiler.disable()
    profiler.print_stats(sort="cumtime")
def _test_binary_classifier(
        M: int = 2,
        log_loss_function: Callable = softmax_cross_entropy_log_loss,
        num_epochs: int = 100):
    """Test case for layer matmul class
    """
    N = 50
    D = 2
    W = weights.he(M, D + 1)
    optimizer = SGD(lr=TYPE_FLOAT(0.1))
    X, T, V = linear_separable(d=D, n=N)

    # X, T = transform_X_T(X, T)

    def callback(W):
        return W

    train_binary_classifier(N=N,
                            D=D,
                            M=M,
                            X=X,
                            T=T,
                            W=W,
                            log_loss_function=log_loss_function,
                            optimizer=optimizer,
                            num_epochs=num_epochs,
                            test_numerical_gradient=True,
                            callback=callback)
def test_020_matmul_instantiation():
    """
    Objective:
        Verify the initialized layer instance provides its properties.
    Expected:
        * name, num_nodes, M, log_level are the same as initialized.
        * X, T, dX, objective returns what is set.
        * N, M property are provided after X is set.
        * Y, dY properties are provided after they are set.
    """
    def objective(X: np.ndarray) -> Union[float, np.ndarray]:
        """Dummy objective function"""
        return np.sum(X)

    for _ in range(NUM_MAX_TEST_TIMES):
        N: int = np.random.randint(1, NUM_MAX_BATCH_SIZE)
        M: int = np.random.randint(1, NUM_MAX_NODES)
        D: int = np.random.randint(1, NUM_MAX_FEATURES)
        name = "test_020_matmul_instantiation"
        matmul = Matmul(name=name,
                        num_nodes=M,
                        W=weights.he(M, D + 1),
                        log_level=logging.DEBUG)
        matmul.objective = objective

        assert matmul.name == name
        assert matmul.num_nodes == matmul.M == M

        matmul._D = D
        assert matmul.D == D

        X = np.random.randn(N, D).astype(TYPE_FLOAT)
        matmul.X = X
        assert np.array_equal(matmul.X, X)
        assert matmul.N == N == X.shape[0]

        matmul._dX = X
        assert np.array_equal(matmul.dX, X)

        T = np.random.randint(0, M, N).astype(TYPE_LABEL)
        matmul.T = T
        assert np.array_equal(matmul.T, T)

        matmul._Y = np.dot(X, X.T)
        assert np.array_equal(matmul.Y, np.dot(X, X.T))

        matmul._dY = np.array(0.9)
        assert matmul._dY == np.array(0.9)

        matmul.logger.debug("This is a pytest")

        assert matmul.objective == objective
def _instantiate(name: str, num_nodes: int, num_features: int, objective=None):
    category = TYPE_FLOAT(np.random.uniform())
    if category < 0.3:
        W = weights.he(num_nodes, num_features + 1)
    elif category < 0.7:
        W = weights.xavier(num_nodes, num_features + 1)
    else:
        W = weights.uniform(num_nodes, num_features + 1)

    matmul = Matmul(name=name, num_nodes=num_nodes, W=W)
    if objective is not None:
        matmul.objective = objective
    return matmul
def disabled_test_020_matmul_round_trip():
    """
    TODO: Disabled as need to re-design numerical_jacobian for 32 bit float e.g TF.

    Objective:
        Verify the forward and backward paths at matmul.

    Expected:
        Forward path:
        1. Matmul function(X) == X @ W.T
        2. Numerical gradient should be the same with numerical Jacobian

        Backward path:
        3. Analytical gradient dL/dX == dY @ W
        4. Analytical dL/dW == X.T @ dY
        5. Analytical gradients are similar to the numerical gradient ones

        Gradient descent
        6. W is updated via the gradient descent.
        7. Objective L is decreasing via the gradient descent.

    """
    profiler = cProfile.Profile()
    profiler.enable()

    for _ in range(NUM_MAX_TEST_TIMES):
        # --------------------------------------------------------------------------------
        # Instantiate a Matmul layer
        # --------------------------------------------------------------------------------
        N: int = np.random.randint(1, NUM_MAX_BATCH_SIZE)
        M: int = np.random.randint(1, NUM_MAX_NODES)
        D: int = np.random.randint(1, NUM_MAX_FEATURES)
        W = weights.he(M, D + 1)
        name = "test_020_matmul_methods"

        def objective(X: np.ndarray) -> Union[float, np.ndarray]:
            """Dummy objective function to calculate the loss L"""
            return np.sum(X)

        # Test both static instantiation and build()
        if TYPE_FLOAT(np.random.uniform()) < 0.5:
            matmul = Matmul(name=name,
                            num_nodes=M,
                            W=W,
                            log_level=logging.DEBUG)
        else:
            matmul_spec = {
                _NAME: "test_020_matmul_builder_to_fail_matmul_spec",
                _NUM_NODES: M,
                _NUM_FEATURES: D,
                _WEIGHTS: {
                    _SCHEME: "he",
                },
                _OPTIMIZER: {
                    _SCHEME: "sGd"
                }
            }
            matmul = Matmul.build(matmul_spec)

        matmul.objective = objective

        # ================================================================================
        # Layer forward path
        # Calculate the layer output Y=f(X), and get the loss L = objective(Y)
        # Test the numerical gradient dL/dX=matmul.gradient_numerical().
        #
        # Note that bias columns are added inside the matmul layer instance, hence
        # matmul.X.shape is (N, 1+D), matmul.W.shape is (M, 1+D)
        # ================================================================================
        X = np.random.randn(N, D).astype(TYPE_FLOAT)
        Logger.debug("%s: X is \n%s", name, X)

        # pylint: disable=not-callable
        Y = matmul.function(X)
        # pylint: disable=not-callable
        L = matmul.objective(Y)

        # Constraint 1 : Matmul outputs Y should be [email protected]
        assert np.array_equal(Y, np.matmul(matmul.X, matmul.W.T))

        # Constraint 2: Numerical gradient should be the same with numerical Jacobian
        GN = matmul.gradient_numerical()  # [dL/dX, dL/dW]

        # DO NOT use matmul.function() as the objective function for numerical_jacobian().
        # The state of the layer will be modified.
        # LX = lambda x: matmul.objective(matmul.function(x))
        def LX(x):
            y = np.matmul(x, matmul.W.T)
            # pylint: disable=not-callable
            return matmul.objective(y)

        EGNX = numerical_jacobian(LX,
                                  matmul.X)  # Numerical dL/dX including bias
        EGNX = EGNX[::, 1::]  # Remove bias for dL/dX
        assert np.array_equal(GN[0], EGNX), \
            "GN[0]\n%s\nEGNX=\n%s\n" % (GN[0], EGNX)

        # DO NOT use matmul.function() as the objective function for numerical_jacobian().
        # The state of the layer will be modified.
        # LW = lambda w: matmul.objective(np.matmul(X, w.T))
        def LW(w):
            Y = np.matmul(matmul.X, w.T)
            # pylint: disable=not-callable
            return matmul.objective(Y)

        EGNW = numerical_jacobian(LW,
                                  matmul.W)  # Numerical dL/dW including bias
        assert np.array_equal(GN[1], EGNW)  # No need to remove bias

        # ================================================================================
        # Layer backward path
        # Calculate the analytical gradient dL/dX=matmul.gradient(dL/dY) with a dummy dL/dY.
        # ================================================================================
        dY = np.ones_like(Y)
        dX = matmul.gradient(dY)

        # Constraint 3: Matmul gradient dL/dX should be dL/dY @ W. Use a dummy dL/dY = 1.0.
        expected_dX = np.matmul(dY, matmul.W)
        expected_dX = expected_dX[::, 1::  # Omit bias
                                  ]
        assert np.array_equal(dX, expected_dX)

        # Constraint 5: Analytical gradient dL/dX close to the numerical gradient GN.
        assert np.all(np.abs(dX - GN[0]) < GRADIENT_DIFF_ACCEPTANCE_VALUE), \
            "dX need close to GN[0]. dX:\n%s\ndiff \n%s\n" % (dX, dX-GN[0])

        # --------------------------------------------------------------------------------
        # Gradient update.
        # Run the gradient descent to update Wn+1 = Wn - lr * dL/dX.
        # --------------------------------------------------------------------------------
        # Python passes the reference to W, hence it is directly updated by the gradient-
        # descent to avoid a temporary copy. Backup W before to compare before/after.
        backup = copy.deepcopy(W)

        # Gradient descent and returns analytical dL/dX, dL/dW
        dS = matmul.update()
        dW = dS[0]

        # Constraint 6.: W has been updated by the gradient descent.
        assert np.any(backup != matmul.W), "W has not been updated "

        # Constraint 5: the numerical gradient (dL/dX, dL/dW) are closer to the analytical ones.
        assert validate_against_expected_gradient(GN[0], dX), \
            "dX=\n%s\nGN[0]=\n%sdiff=\n%s\n" % (dX, GN[0], (dX-GN[0]))
        assert validate_against_expected_gradient(GN[1], dW), \
            "dW=\n%s\nGN[1]=\n%sdiff=\n%s\n" % (dW, GN[1], (dW-GN[1]))

        # Constraint 7: gradient descent progressing with the new objective L(Yn+1) < L(Yn)
        # pylint: disable=not-callable
        assert np.all(np.abs(objective(matmul.function(X)) < L))

    profiler.disable()
    profiler.print_stats(sort="cumtime")