def make_request(self): response = requests.post( "https://www.skyscanner.es/g/conductor/v1/fps3/search/", params=get_params(), headers=get_headers(), data=get_request_data(self.day, self.iata)) self.data, self.status = response.content, response.status_code print(self.status)
def rotate_key_pair(event): log.debug(json.dumps(event, indent=2)) params = get_params(event) key_name = get_parameter(params, 'Keyname', None) # Keyname is required. if key_name == None: return create_failure(event) delete_key_pair(event) return create_and_store_key_pair(event)
def list_peer_info(self): # 对端信息 try: peer_data = common.get_params( dict(appversion=config.APP_VERSION, v="1", ct="1"), self.user_info.get("sessionid"), True) result = self.request_handler.get(config.LIST_PEER_URL + peer_data) if result.status_code == 200: temp = result.json() if temp.get("rtn") == 0: self.user_info["all_peer_info"] = temp.get("result") return True except Exception as error: logging.error("list_peer_info:{0}".format(error)) return False
def account_info(self): # 账户信息 try: account_data = common.get_params( {"appversion": config.APP_VERSION}, self.user_info.get("sessionid")) result = self.request_handler.post(config.ACCOUNT_INFO_URL, data=account_data) if result.status_code == 200: temp = result.json() if temp.get("iRet") == 0: self.user_info["account_info"] = temp.get("data") return True except Exception as error: logging.error("account_info:{0}".format(error)) return False
def delete_key_pair(event): log.debug(json.dumps(event, indent=2)) params = get_params(event) s3_bucket = get_parameter(params, 'S3Bucket', None) s3_key = get_parameter(params, 'S3Key', None) key_name = get_parameter(params, 'Keyname', None) log.debug('Delete EC2 key pair:') response = ec2_client.delete_key_pair(KeyName=key_name) log.debug(json.dumps(response, indent=2)) log.debug('Delete S3 pem file') response = s3_client.delete_object(Bucket=s3_bucket, Key=s3_key) log.debug(json.dumps(response, indent=2))
def handler(event, context): log.debug(json.dumps(event, indent=2)) params = get_params(event) operation = get_parameter(params, 'Operation', None) s3_bucket = get_parameter(params, 'S3Bucket', None) s3_key = get_parameter(params, 'S3Key', None) # Operation, S3Bucket and S3Key are always required! if operation == None or s3_bucket == None or s3_key == None: return create_failure(event) if operation == 'CREATE': return create_and_store_key_pair(event) elif operation == 'ROTATE': return rotate_key_pair(event) return create_failure(event)
def usb_info(self, deviceid=False): # 获取任一对端挂载硬盘信息 try: if not deviceid: deviceid = self.get_peer_device_id() peer_data = common.get_params( dict(appversion=config.APP_VERSION, v="1", ct="1", deviceid=deviceid), self.user_info.get("sessionid"), True) result = self.request_handler.get(config.PEER_USB_INFO_URL + peer_data) if result.status_code == 200: temp = result.json() if temp.get("rtn") == 0: self.user_info["usb_info"] = temp.get("result") return True except Exception as error: logging.error("account_info:{0}".format(error)) return False
def remote_download_login(self, peerid=False): # 远端下载登陆 try: if not peerid: peerid = self.get_peer_id() remote_dl_data = common.get_params( dict(pid=peerid, appversion=config.APP_VERSION, v="1", ct="32"), self.user_info.get("sessionid"), True) print(config.LOGIN_REMOTE_DOWNLOAD_URL + remote_dl_data) result = self.request_handler.get( config.LOGIN_REMOTE_DOWNLOAD_URL + remote_dl_data) if result.status_code == 200: temp = result.json() if temp.get("rtn") == 0: del temp["rtn"] self.user_info["remote_download_login"] = temp return True except Exception as error: logging.error("list_remote_download:{0}".format(error)) return False
def create_and_store_key_pair(event): log.debug(json.dumps(event, indent=2)) fragment = event['fragment'] params = get_params(event) s3_bucket = get_parameter(params, 'S3Bucket', None) s3_key = get_parameter(params, 'S3Key', None) key_name = get_parameter(params, 'Keyname', None) if key_name == None: key_name = generate_name(20) if not does_key_pair_exists(key_name): response = ec2_client.create_key_pair(KeyName=key_name) store_key_material(response, s3_bucket, s3_key) fragment = key_name return { 'requestId': event['requestId'], 'status': 'success', 'fragment': fragment }
extra_global_params=[("stimTimes", "scalar*")], injection_code= """ scalar current = ($(gennrand_uniform) * $(n) * 2.0) - $(n); if($(startStim) != $(endStim) && $(t) >= $(stimTimes)[$(startStim)]) { current += $(stimMagnitude); $(startStim)++; } $(injectCurrent, current); """) # ---------------------------------------------------------------------------- # Stimuli generation # ---------------------------------------------------------------------------- # Get standard model parameters params = get_params(build_model=True, measure_timing=False, use_genn_recording=True) params["seed"] = 1234 if "seed" in params: np.random.seed(params["seed"]) # Generate stimuli sets of neuron IDs num_cells = params["num_excitatory"] + params["num_inhibitory"] stim_gen_start_time = perf_counter() input_sets = [np.random.choice(num_cells, params["stimuli_set_size"], replace=False) for _ in range(params["num_stimuli_sets"])] # Lists of stimulus and reward times for use when plotting start_stimulus_times = [] end_stimulus_times = [] start_reward_times = [] end_reward_times = []
def save_model(self, iter): common.save_params(fName=self.sn_dir + time.strftime("%Y-%m-%d-%H-%M-") + ('%0.6d.sn' % iter), obj=common.get_params(self.model.params))
import gym from common import get_params from brain import Agent import psutil from torch.utils.tensorboard import SummaryWriter import time import mujoco_py from mujoco_py.generated import const from mujoco_py import GlfwContext import cv2 GlfwContext(offscreen=True) if __name__ == "__main__": params = get_params() env = gym.make(params["env_name"]) params.update({"n_states": env.observation_space.shape[0]}) params.update({"n_actions": env.action_space.shape[0]}) params.update({"action_bounds": [env.action_space.low[0], env.action_space.high[0]]}) params.update({"max_episode_steps": env.spec.max_episode_steps}) params.update({"max_episodes": params["max_steps"] // params["max_episode_steps"]}) print("params:", params) agent = Agent(**params) to_gb = lambda in_bytes: in_bytes / 1024 / 1024 / 1024 explore_steps = 0 running_reward = 0 if params["do_train"]: for episode in range(1, 1 + params["max_episodes"]): state = env.reset()
def save_model(self, itr): common.save_params(fName=self.sn_dir + time.strftime("%Y-%m-%d-%H-%M-") +('%0.6d.sn'%itr), obj = common.get_params(self.model.param_struct[0].params + self.model.param_struct[1].params))
def main(argv): del argv params = common.get_params() run_model(params)