Beispiel #1
0
    def cool_down(self, temp_threshold=80, stress_present=False):
        """
        If the temperature is above a certain threshold, this function will delay
        the next experiment until the chip has cooled down.
        :param temp_threshold: The maximum temperature allowed
        :param stress_present: If true, we need to kill the stress before cooldown
        :return: If it was forced to kill stress
        """
        killed_stress = False
        temp = get_temp()
        if temp:
            while temp > temp_threshold:
                print("Temperature " + str(temp) +
                      " is too high! Cooling down")
                if stress_present:
                    self._processes.kill_stress()
                    killed_stress = True
                sleep(10)
                temp = get_temp()
            print("Temperature " + str(temp) + " is ok. Running experiment")
        else:
            print("\n\tWARNING: Using default cooldown time of 30 s\n")
            sleep(30)

        return killed_stress
Beispiel #2
0
    def run_sut_stress(self, sut, stress, cores):
        """
        :param sut: System under stress
        :param stress: Enemy process
        :param cores: Number of cores to start the enemy on
        :param style: Run the SUT with perf or some similar instrument
        """
        # start up the stress on cores 1-cores+1
        if cores > 0:
            for i in range(1, cores + 1):
                self.start_stress(stress, i)

        # Run the program on core 0
        s_out, s_err = self.run_program_single(sut, 0)
        self._check_error(s_err)

        if cores > 0:
            self._processes.kill_stress()

        if get_event(s_out, "total time(us): "):
            ex_time = get_event(s_out, "total time(us): ")
        elif get_event(s_out, "Total time (secs): "):
            ex_time = get_event(s_out, "Total time (secs): ")
        elif get_event(s_out, "Max: "):
            ex_time = get_event(s_out, "Max: ")
        elif get_event(s_out, "average = "):
            ex_time = get_event(s_out, "average = ")
        else:
            print("Unable find execution time or maximum latency")
            sys.exit(0)

        ex_temp = get_temp()

        return ex_time, ex_temp
def main():
    citizen_rules_cfn = get_temp(RULES_TEMP_BASE).replace(
        "{{citizen_rules}}",
        get_rules_cf(get_rules())
        # get_rules_cf([{'description': 'Placeholder', 'name': 'check_root_access_keys' }])
    )
    generate_file(TEMP_DESTINATION, citizen_rules_cfn)
def main():
    roles_cf = get_temp(
        TEMP_BASE).replace(  # Update Citizen roles with Citizen account info
            "{{citizen_roles}}", get_citizen_roles(get_accounts())
        ).replace(  # Update CitizenUpdate roles with Citizen account info
            "{{citizen_update_roles}}",
            get_citizen_update_roles(get_accounts()))
    generate_file(TEMP_DESTINATION, roles_cf)  # Creates the deployable CF file
def main():
    citizen_update_cf = get_temp(
        TEMP_BASE
    ).replace(  # Update bucket policy with child account information
        "{{bucket_policy_accounts}}", get_bucket_policy_cf(get_accounts())
    ).replace(  # Update CitizenUpdate lambda function with checksum details
        "{{update_citizen_stacks}}", get_checksum_zip("update_citizen_stacks"))
    generate_file(TEMP_DESTINATION,
                  citizen_update_cf)  # Creates the deployable CF file
Beispiel #6
0
def main():
    reporting_cf = get_temp(
        TEMP_BASE
    ).replace(  # Update CF template with all CloudWatch events
        "{{event_rule}}", get_event_rule_cf(get_accounts())
    ).replace(  # Update generate_compliance_report lambda function with checksum details
        "{{generate_compliance_report}}",
        get_checksum_zip("generate_compliance_report"))
    generate_file(TEMP_DESTINATION,
                  reporting_cf)  # Creates the deployable CF file
Beispiel #7
0
def main():
    elasticsearch_cf = get_temp(
        TEMP_BASE
    ).replace(  # Update logs_to_elastic_search lambda function with checksum details
        "{{logs_to_elastic_search}}",
        get_checksum_zip("logs_to_elastic_search")
    ).replace(  # Update roll_indexes lambda function with checksum details
        "{{roll_indexes}}",
        get_checksum_zip("roll_indexes")).replace("{{external_cidr}}",
                                                  get_external_cidr())
    generate_file(TEMP_DESTINATION,
                  elasticsearch_cf)  # Creates the deployable CF file
Beispiel #8
0
def main():
    verification_rule_cf = get_temp(
        RULES_TEMP_BASE
    ).replace(  # Update cf with each rule stack
        "{{verification_rules}}", get_rules_cf(get_rules())
    ).replace(  # Update S3 bucket policy to only allow access from company's IP address range
        "{{external_cidr}}",
        get_external_cidr()).replace("{{notifications_slack}}",
                                     get_notification_slack()).replace(
                                         "{{slack_channel_hook_url}}",
                                         get_slack_channel_hook_url()).replace(
                                             "{{notifications_email}}",
                                             get_notification_email())
    generate_file(TEMP_DESTINATION, verification_rule_cf)
Beispiel #9
0
    def run_mapping(self, experiment_info, mapping, iteration_name=None):
        """
        Run a mapping described by a mapping object
        :param experiment_info: An ExperimentInfo object
        :param mapping: A dict of core mappings
        :param iteration_name: For tuning, we can store the exact param
        :return:
        """

        assert isinstance(experiment_info, ExperimentInfo)

        # Make sure the governor is correctly
        cmd = "echo " + experiment_info.governor + \
              " | sudo tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor"
        self._processes.system_call(cmd)

        delta_temp = 5
        total_times = []
        total_temps = []
        perf_results = dict()
        voluntary_switches = []
        involuntary_switches = []

        # start from 95 and decrease to 50 by 1
        candidate_quantiles = [x / 100.0 for x in range(95, 49, -1)]

        if iteration_name is None:
            iteration_name = mapping
        result = MappingResult(iteration_name)

        # Initialise a perf result list
        if self._instrument_cmd:
            perf_results = []

        while len(total_temps) < experiment_info.measurement_iterations_max:
            it = 0

            # start up the stress in accordance with the mapping
            for core in mapping:
                self.start_stress(mapping[core], core)

            while it < experiment_info.measurement_iterations_step:
                if self.cool_down(experiment_info.max_temperature - delta_temp,
                                  mapping):
                    for core in mapping:
                        self.start_stress(mapping[core], core)

                # Clear the cache first
                cmd = "sync; echo 1 > /proc/sys/vm/drop_caches"
                s_out, s_err = self._processes.system_call(cmd)
                self._check_error(s_err)

                # For perf, I need to think if we need to log all values, take an average...
                # For the moment, an average should be fine
                # Run the program on core 0
                s_out, s_err = self.run_program_single(experiment_info.sut, 0)
                if self._instrument_cmd:
                    perf_results.append(get_perf_event(s_err))

                if self.get_switches(s_out) is not None:
                    (voluntary, involuntary) = self.get_switches(s_out)
                    voluntary_switches.append(voluntary)
                    involuntary_switches.append(involuntary)

                final_temp = get_temp()
                if final_temp < experiment_info.max_temperature:
                    total_times.append(self.get_metric(s_out))
                    total_temps.append(final_temp)
                    it = it + 1

                else:
                    print(
                        "The final temperature was to high, redoing experiment"
                    )
                    delta_temp += 5
                    if delta_temp > 25:
                        print(
                            "The test heats up the processor more than 25 degrees, I o not know what to do"
                        )
                        exit(1)

            if len(mapping) > 0:
                self._processes.kill_stress()

            # This part runs if we have variable iterations based on confidence interval
            # and can stop early
            if experiment_info.stopping == "no_decrease" or experiment_info.stopping == "optimistic":
                (conf_var, conf_min, conf_max) = \
                    confidence_variation(times=total_times,
                                         quantile=experiment_info.quantile,
                                         confidence_interval=experiment_info.confidence_interval)
                print("The confidence variation is ", conf_var)
                if conf_var < experiment_info.max_confidence_variation:
                    result.log_result(
                        perf_results=perf_results,
                        total_times=total_times,
                        total_temps=total_temps,
                        quantile=experiment_info.quantile,
                        conf_min=conf_min,
                        conf_max=conf_max,
                        voluntary_switches=voluntary_switches,
                        involuntary_switches=involuntary_switches,
                        success=True)
                    print("The q value is", result.q_value)
                    self._processes.kill_stress()
                    return result
            elif experiment_info.stopping == "pessimistic":
                for q in candidate_quantiles:
                    (conf_var, conf_min, conf_max) = \
                        confidence_variation(times=total_times,
                                             quantile=q,
                                             confidence_interval=experiment_info.confidence_interval)
                    if conf_var < experiment_info.max_confidence_variation:
                        result.log_result(
                            perf_results=perf_results,
                            total_times=total_times,
                            total_temps=total_temps,
                            quantile=q,
                            conf_min=conf_min,
                            conf_max=conf_max,
                            voluntary_switches=voluntary_switches,
                            involuntary_switches=involuntary_switches,
                            success=True)
                        print("The q value is", result.q_value)
                        self._processes.kill_stress()
                        return result

        # At this point we know that we have hit max iterations
        if experiment_info.stopping == "optimistic":
            for q in candidate_quantiles:
                (conf_var, conf_min, conf_max) = \
                    confidence_variation(times=total_times,
                                         quantile=q,
                                         confidence_interval=experiment_info.confidence_interval)
                if conf_var < experiment_info.max_confidence_variation:
                    result.log_result(
                        perf_results=perf_results,
                        total_times=total_times,
                        total_temps=total_temps,
                        quantile=q,
                        conf_min=conf_min,
                        conf_max=conf_max,
                        voluntary_switches=voluntary_switches,
                        involuntary_switches=involuntary_switches,
                        success=True)
                    print("The q value is", result.q_value)
                    self._processes.kill_stress()
                    return result

        # If we hit this and we did not intend to (not using "fixed"), we failed
        # to get a stable quantile basically
        (conf_var, conf_min, conf_max) = \
            confidence_variation(times=total_times,
                                 quantile=experiment_info.quantile,
                                 confidence_interval=experiment_info.confidence_interval)
        result.log_result(
            perf_results=perf_results,
            total_times=total_times,
            total_temps=total_temps,
            quantile=experiment_info.quantile,
            conf_min=conf_min,
            conf_max=conf_max,
            voluntary_switches=voluntary_switches,
            involuntary_switches=involuntary_switches,
            success=True
            if conf_var < experiment_info.max_confidence_variation else False)
        print("The q value is", result.q_value)
        self._processes.kill_stress()
        return result
Beispiel #10
0
def main():
    verification_rule_cf = get_temp(
        RULE_TEMP_BASE).replace(  # Update cf with with resources for each rule
            "{{verification_rule}}", get_rule_cf(get_accounts()))
    generate_file(TEMP_DESTINATION, verification_rule_cf)
def main():
    subscriptions_cf = get_temp(
        RULES_TEMP_BASE).replace(  # Update cf with each rule subscription
            "{{rules-subscriptions}}", get_subscriptions_cf(get_rules()))
    generate_file(TEMP_DESTINATION,
                  subscriptions_cf)  # Creates the deployable CF file