def greedyCliquesSemiExhaustive(this, weight=None, progressStack=False): untouched = set(xrange(this.size)) weights = None maxormin = max if isinstance(weight, (int, float)): if weight < 0: maxormin = min elif weight is not None: weights = [weight(v) for v in this.sections] wMax = -common.Infinity QMax = set() if progressStack is not None: progressStack.push(title="Iterating remaining initial conditions for clique searching", maximum=this.size) while len(untouched) != 0: v0 = this.pickMaxWeightNode(untouched, weights=weights, maxormin=maxormin) curGC = this.greedyCliques(v0, weight=weight, progressStack=None) if curGC[1] > wMax: (QMax, wMax) = curGC untouched.difference_update(curGC[0]) if progressStack is not None: if not progressStack.update(this.size - len(untouched), message="Evaluating initial conditions: %d candidates left (current score: %g)..." % (len(untouched), wMax)): break if progressStack is not None: progressStack.pop() return (QMax, wMax)
def reduceNet(this, progressStack=None): if len(this.sectionBuffer) != 0: if not progressStack is None: progressStack.push(title='Simplying course structure', maximum=len(this.sectionBuffer)) for newsects in this.sectionBuffer: noEquiv = True for oldsects in this.sections: if oldsects == newsects: h = str(oldsects) if h in this.otherEquivalentSections: this.otherEquivalentSections[h].append(newsects) else: this.otherEquivalentSections[h] = [newsects] noEquiv = False break if noEquiv: this.sections.append(newsects) if not progressStack is None: progressStack.increase(1, message='Evaluating section %s for network construction...'%str(newsects)) oldsize = this.size this.size = len(this.sections) this.adjlist.extend([set() for i in xrange(this.size - oldsize)]) # cannot use * operator because we need N *copies* of set(). if not progressStack is None: progressStack.pop()
def greedyCliques(this, initNode=None, weight=None, progressStack=None): maxormin = max weights = None if isinstance(weight, (int, float)) and weight < 0: maxormin = min elif weight is not None: weights = [weight(s) for s in this.sections] rg = common.randomGenerator() xr = xrange(this.size) V0 = this.pickMaxWeightNode(xrange(this.size), weights=weights, maxormin=maxormin, rg=rg) if initNode is None else initNode Q = set((V0,)) rho = set(this.adjlist[V0]) totalweight = 1 if weights is None else weights[V0] initRhoSize = len(rho) hasProgress = isinstance(progressStack, IProgressStack) if hasProgress: progressStack.push(title="Searching for cliques", maximum=initRhoSize) while len(rho) != 0: # O(k)* if hasProgress: if not progressStack.update(initRhoSize - len(rho), message="Enlarging cliques: %d candidates left (current score: %g)..." % (len(rho), totalweight)): break # find all new common neighbors, and # pick the one with most common neighbors maxv = None if weights is None: vmax = maxormin([(len(rho & this.adjlist[v]), rg, v) for v in rho])[2] # O(k^2) Q.add(vmax) rho.intersection_update(this.adjlist[vmax]) totalweight += 1 else: adjweights = dict((v, sum(weights[u] for u in this.adjlist[v] & rho)) for v in rho) maxp = max((weights[v], adjweights[v], rg, v) for v in rho) Q.add(maxp[-1]) rho.intersection_update(this.adjlist[maxp[-1]]) totalweight += weights[maxp[-1]] if hasProgress: progressStack.pop() return (Q, totalweight if maxormin == max else -totalweight) # O(k^3)
def evaluateAllVertices(this, progressStack=None): if progressStack is not None: progressStack.push(title='Constructing course network', maximum=this.size) for v in xrange(this.size): this.evaluateVertex(v) if progressStack is not None: progressStack.increase(1, message='Evaluating vertex #%d for network construction...'%v) if progressStack is not None: progressStack.pop()
def __shuffle(self, x, random=None): """x, random=random.random -> shuffle list x in place; return None. Optional arg random is a 0-argument function returning a random float in [0.0, 1.0); by default, the standard random.random. taken from python2.7 because 3.5 does something different with different results """ if random is None: random = self.random _int = int for i in reversed(xrange(1, len(x))): # pick an element in x[:i+1] with which to exchange x[i] j = _int(random() * (i+1)) x[i], x[j] = x[j], x[i]
def greedyCliquesExhaustive(this, weight=None, progressStack=False): hasProgress = isinstance(progressStack, IProgressStack) if hasProgress: progressStack.push(title="Iterating initial conditions for clique searching", maximum=this.size) #if not allResults: QMax = set() wMax = -common.Infinity for v in xrange(this.size): if hasProgress: if not progressStack.increase(1, message="Evaluating vertex #%d for cliques (current score: %g)"%(v,wMax)): break curGC = this.greedyCliques(v, weight=weight, progressStack=None) if curGC[1] > wMax: (QMax, wMax) = curGC if hasProgress: progressStack.pop() return (QMax, wMax)
def __sample(self, population, k): """Chooses k unique random elements from a population sequence. Returns a new list containing elements from the population while leaving the original population unchanged. The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices). Members of the population need not be hashable or unique. If the population contains repeats, then each occurrence is a possible selection in the sample. To choose a sample in a range of integers, use xrange as an argument. This is especially fast and space efficient for sampling from a large population: sample(xrange(10000000), 60) taken from python2.7 because 3.5 does something different with different results """ # Sampling without replacement entails tracking either potential # selections (the pool) in a list or previous selections in a set. # When the number of selections is small compared to the # population, then tracking selections is efficient, requiring # only a small set and an occasional reselection. For # a larger number of selections, the pool tracking method is # preferred since the list takes less space than the # set and it doesn't suffer from frequent reselections. n = len(population) if not 0 <= k <= n: raise ValueError("sample larger than population") random = self.random _int = int result = [None] * k setsize = 21 # size of a small set minus size of an empty list if k > 5: setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets if n <= setsize or hasattr(population, "keys"): # An n-length list is smaller than a k-length set, or this is a # mapping type so the other algorithm wouldn't work. pool = list(population) for i in xrange(k): # invariant: non-selected at [0,n-i) j = _int(random() * (n-i)) result[i] = pool[j] pool[j] = pool[n-i-1] # move non-selected item into vacancy else: try: selected = set() selected_add = selected.add for i in xrange(k): j = _int(random() * n) while j in selected: j = _int(random() * n) selected_add(j) result[i] = population[j] except (TypeError, KeyError): # handle (at least) sets if isinstance(population, list): raise return self.sample(tuple(population), k) return result
def evaluateVertex(this, v): for i in xrange(v+1, this.size): if this.sections[i].course != this.sections[v].course and not this.sections[i].intersect(this.sections[v]): this.adjlist[i].add(v) this.adjlist[v].add(i)
def exactCliques(this, weight=None, progressStack=False): hasProgress = isinstance(progressStack, IProgressStack) if hasProgress: progressStack.push(title="Search for cliques exactly", maximum=this.size, unitstep=1) QMax = [] wMax = -common.Infinity QsPrev = dict( ((v,), 1) for v in xrange(this.size) ) weights = None searchformax = True if isinstance(weight, (int, float)): if weight < 0: searchformax = False elif weight is not None: weights = [weight(v) for v in this.sections] QsPrev = dict( ((v,), w) for (v, w) in enumerate(weights) ) for QSize in xrange(this.size): if hasProgress: progressStack.push(message="Current clique size: %d (current score: %g)"%(QSize, wMax), maximum=len(QsPrev)) QsNext = dict() # find all total neighbors and append to list. for (Q, W) in QsPrev.items(): if hasProgress: if not progressStack.increase(1, message="Current clique size %d (current score: %g)"%(QSize, wMax)): progressStack.pop() progressStack.pop() return (QMax, wMax) neis = [this.adjlist[v] for v in Q] totalNeis = set(neis[0]) for nei in neis[1:]: totalNeis.intersection_update(nei) if len(totalNeis) == 0: if not searchformax: if hasProgress: progressStack.pop() progressStack.pop() return (set(Q), -W) else: if W > wMax: (QMax, wMax) = (set(Q), W) for n in totalNeis: Q2 = common.appendSorted(Q, n) W2 = W if weights is not None: W2 += weights[n] else: W2 += 1 QsNext[Q2] = W2 QsPrev = QsNext if hasProgress: progressStack.pop() if len(QsPrev) == 0: break if hasProgress: progressStack.pop() return (QMax, wMax)
def vertexWithMaxDegree(this): this.evaluateAllVertices() return max(xrange(this.size), key=lambda v:len(this.adjlist[v]))
def verticesWithDegree(this, k): this.evaluateAllVertices() return [v for v in xrange(this.size) if len(this.adjlist[v]) == k]