Beispiel #1
0
Datei: fs.py Projekt: Sacusa/gem5
def build_drive_system(np):
    # driver system CPU is always simple, so is the memory
    # Note this is an assignment of a class, not an instance.
    DriveCPUClass = AtomicSimpleCPU
    drive_mem_mode = 'atomic'
    DriveMemClass = SimpleMemory

    cmdline = cmd_line_template()
    if buildEnv['TARGET_ISA'] == 'mips':
        drive_sys = makeLinuxMipsSystem(drive_mem_mode, bm[1], cmdline=cmdline)
    elif buildEnv['TARGET_ISA'] == 'sparc':
        drive_sys = makeSparcSystem(drive_mem_mode, bm[1], cmdline=cmdline)
    elif buildEnv['TARGET_ISA'] == 'x86':
        drive_sys = makeLinuxX86System(drive_mem_mode, np, bm[1],
                                       cmdline=cmdline)
    elif buildEnv['TARGET_ISA'] == 'arm':
        drive_sys = makeArmSystem(drive_mem_mode, options.machine_type, np,
                                  bm[1], options.dtb_filename, cmdline=cmdline)

    # Create a top-level voltage domain
    drive_sys.voltage_domain = VoltageDomain(voltage = options.sys_voltage)

    # Create a source clock for the system and set the clock period
    drive_sys.clk_domain = SrcClockDomain(clock =  options.sys_clock,
            voltage_domain = drive_sys.voltage_domain)

    # Create a CPU voltage domain
    drive_sys.cpu_voltage_domain = VoltageDomain()

    # Create a source clock for the CPUs and set the clock period
    drive_sys.cpu_clk_domain = SrcClockDomain(clock = options.cpu_clock,
                                              voltage_domain =
                                              drive_sys.cpu_voltage_domain)

    drive_sys.cpu = DriveCPUClass(clk_domain=drive_sys.cpu_clk_domain,
                                  cpu_id=0)
    drive_sys.cpu.createThreads()
    drive_sys.cpu.createInterruptController()
    drive_sys.cpu.connectAllPorts(drive_sys.membus)
    if options.kernel is not None:
        drive_sys.workload.object_file = binary(options.kernel)

    if ObjectList.is_kvm_cpu(DriveCPUClass):
        drive_sys.kvm_vm = KvmVM()

    drive_sys.iobridge = Bridge(delay='50ns',
                                ranges = drive_sys.mem_ranges)
    drive_sys.iobridge.slave = drive_sys.iobus.master
    drive_sys.iobridge.master = drive_sys.membus.slave

    # Create the appropriate memory controllers and connect them to the
    # memory bus
    drive_sys.mem_ctrls = [DriveMemClass(range = r)
                           for r in drive_sys.mem_ranges]
    for i in range(len(drive_sys.mem_ctrls)):
        drive_sys.mem_ctrls[i].port = drive_sys.membus.master

    drive_sys.init_param = options.init_param

    return drive_sys
Beispiel #2
0
def add_replacement_policy_options(parser):
    global replacement_policy_list
    replacement_policy_list = ObjectList.ObjectList(
        getattr(m5.objects, "BaseReplacementPolicy", None))
    parser.add_option(
        "--cache_repl", type="choice", default="LRURP",
        choices=replacement_policy_list.get_names(),
        help = "Cache replacement policy "
               "(overriden by cache-level-specific options.)")
    parser.add_option(
        "--l1d_repl", type="choice",
        choices=replacement_policy_list.get_names(),
        help = "L1 data cache replacement policy")
    parser.add_option(
        "--l1i_repl", type="choice",
        choices=replacement_policy_list.get_names(),
        help = "L1 instruction cache replacement policy")
    parser.add_option(
        "--l2_repl", type="choice",
        choices=replacement_policy_list.get_names(),
        help = "L2 cache replacement policy")
Beispiel #3
0
def build_test_system(np):
    cmdline = cmd_line_template()
    if buildEnv['TARGET_ISA'] == "mips":
        test_sys = makeLinuxMipsSystem(test_mem_mode, bm[0], cmdline=cmdline)
    elif buildEnv['TARGET_ISA'] == "sparc":
        test_sys = makeSparcSystem(test_mem_mode, bm[0], cmdline=cmdline)
    elif buildEnv['TARGET_ISA'] == "riscv":
        test_sys = makeBareMetalRiscvSystem(test_mem_mode,
                                            bm[0],
                                            cmdline=cmdline)
    elif buildEnv['TARGET_ISA'] == "x86":
        test_sys = makeLinuxX86System(test_mem_mode,
                                      np,
                                      bm[0],
                                      args.ruby,
                                      cmdline=cmdline)
    elif buildEnv['TARGET_ISA'] == "arm":
        test_sys = makeArmSystem(
            test_mem_mode,
            args.machine_type,
            np,
            bm[0],
            args.dtb_filename,
            bare_metal=args.bare_metal,
            cmdline=cmdline,
            external_memory=args.external_memory_system,
            ruby=args.ruby,
            vio_9p=args.vio_9p,
            bootloader=args.bootloader,
        )
        if args.enable_context_switch_stats_dump:
            test_sys.enable_context_switch_stats_dump = True
    else:
        fatal("Incapable of building %s full system!", buildEnv['TARGET_ISA'])

    # Set the cache line size for the entire system
    test_sys.cache_line_size = args.cacheline_size

    # Create a top-level voltage domain
    test_sys.voltage_domain = VoltageDomain(voltage=args.sys_voltage)

    # Create a source clock for the system and set the clock period
    test_sys.clk_domain = SrcClockDomain(
        clock=args.sys_clock, voltage_domain=test_sys.voltage_domain)

    # Create a CPU voltage domain
    test_sys.cpu_voltage_domain = VoltageDomain()

    # Create a source clock for the CPUs and set the clock period
    test_sys.cpu_clk_domain = SrcClockDomain(
        clock=args.cpu_clock, voltage_domain=test_sys.cpu_voltage_domain)

    if buildEnv['TARGET_ISA'] == 'riscv':
        test_sys.workload.bootloader = args.kernel
    elif args.kernel is not None:
        test_sys.workload.object_file = binary(args.kernel)

    if args.script is not None:
        test_sys.readfile = args.script

    test_sys.init_param = args.init_param

    # For now, assign all the CPUs to the same clock domain
    test_sys.cpu = [
        TestCPUClass(clk_domain=test_sys.cpu_clk_domain, cpu_id=i)
        for i in range(np)
    ]

    if args.ruby:
        bootmem = getattr(test_sys, '_bootmem', None)
        Ruby.create_system(args, True, test_sys, test_sys.iobus,
                           test_sys._dma_ports, bootmem)

        # Create a seperate clock domain for Ruby
        test_sys.ruby.clk_domain = SrcClockDomain(
            clock=args.ruby_clock, voltage_domain=test_sys.voltage_domain)

        # Connect the ruby io port to the PIO bus,
        # assuming that there is just one such port.
        test_sys.iobus.mem_side_ports = test_sys.ruby._io_port.in_ports

        for (i, cpu) in enumerate(test_sys.cpu):
            #
            # Tie the cpu ports to the correct ruby system ports
            #
            cpu.clk_domain = test_sys.cpu_clk_domain
            cpu.createThreads()
            cpu.createInterruptController()

            test_sys.ruby._cpu_ports[i].connectCpuPorts(cpu)

    else:
        if args.caches or args.l2cache:
            # By default the IOCache runs at the system clock
            test_sys.iocache = IOCache(addr_ranges=test_sys.mem_ranges)
            test_sys.iocache.cpu_side = test_sys.iobus.mem_side_ports
            test_sys.iocache.mem_side = test_sys.membus.cpu_side_ports
        elif not args.external_memory_system:
            test_sys.iobridge = Bridge(delay='50ns',
                                       ranges=test_sys.mem_ranges)
            test_sys.iobridge.cpu_side_port = test_sys.iobus.mem_side_ports
            test_sys.iobridge.mem_side_port = test_sys.membus.cpu_side_ports

        # Sanity check
        if args.simpoint_profile:
            if not ObjectList.is_noncaching_cpu(TestCPUClass):
                fatal("SimPoint generation should be done with atomic cpu")
            if np > 1:
                fatal(
                    "SimPoint generation not supported with more than one CPUs"
                )

        for i in range(np):
            if args.simpoint_profile:
                test_sys.cpu[i].addSimPointProbe(args.simpoint_interval)
            if args.checker:
                test_sys.cpu[i].addCheckerCpu()
            if not ObjectList.is_kvm_cpu(TestCPUClass):
                if args.bp_type:
                    bpClass = ObjectList.bp_list.get(args.bp_type)
                    test_sys.cpu[i].branchPred = bpClass()
                if args.indirect_bp_type:
                    IndirectBPClass = ObjectList.indirect_bp_list.get(
                        args.indirect_bp_type)
                    test_sys.cpu[i].branchPred.indirectBranchPred = \
                        IndirectBPClass()
            test_sys.cpu[i].createThreads()

        # If elastic tracing is enabled when not restoring from checkpoint and
        # when not fast forwarding using the atomic cpu, then check that the
        # TestCPUClass is DerivO3CPU or inherits from DerivO3CPU. If the check
        # passes then attach the elastic trace probe.
        # If restoring from checkpoint or fast forwarding, the code that does this for
        # FutureCPUClass is in the Simulation module. If the check passes then the
        # elastic trace probe is attached to the switch CPUs.
        if args.elastic_trace_en and args.checkpoint_restore == None and \
            not args.fast_forward:
            CpuConfig.config_etrace(TestCPUClass, test_sys.cpu, args)

        CacheConfig.config_cache(args, test_sys)

        MemConfig.config_mem(args, test_sys)

    if ObjectList.is_kvm_cpu(TestCPUClass) or \
        ObjectList.is_kvm_cpu(FutureClass):
        # Assign KVM CPUs to their own event queues / threads. This
        # has to be done after creating caches and other child objects
        # since these mustn't inherit the CPU event queue.
        for i, cpu in enumerate(test_sys.cpu):
            # Child objects usually inherit the parent's event
            # queue. Override that and use the same event queue for
            # all devices.
            for obj in cpu.descendants():
                obj.eventq_index = 0
            cpu.eventq_index = i + 1
        test_sys.kvm_vm = KvmVM()

    return test_sys
Beispiel #4
0
    drive_sys = build_drive_system(np)
    root = makeDualRoot(True, test_sys, drive_sys, args.etherdump)
elif len(bm) == 1 and args.dist:
    # This system is part of a dist-gem5 simulation
    root = makeDistRoot(test_sys, args.dist_rank, args.dist_size,
                        args.dist_server_name, args.dist_server_port,
                        args.dist_sync_repeat, args.dist_sync_start,
                        args.ethernet_linkspeed, args.ethernet_linkdelay,
                        args.etherdump)
elif len(bm) == 1:
    root = Root(full_system=True, system=test_sys)
else:
    print("Error I don't know how to create more than 2 systems.")
    sys.exit(1)

if ObjectList.is_kvm_cpu(TestCPUClass) or \
    ObjectList.is_kvm_cpu(FutureClass):
    # Required for running kvm on multiple host cores.
    # Uses gem5's parallel event queue feature
    # Note: The simulator is quite picky about this number!
    root.sim_quantum = int(1e9)  # 1 ms

if args.timesync:
    root.time_sync_enable = True

if args.frame_capture:
    VncServer.frame_capture = True

if buildEnv['TARGET_ISA'] == "arm" and not args.bare_metal \
        and not args.dtb_filename:
    if args.machine_type not in [
Beispiel #5
0
    CPUClass(clk_domain=system.cpu_clk_domain, cpu_id=i) for i in range(np)
]

if args.caches or args.l2cache:
    # By default the IOCache runs at the system clock
    system.iocache = IOCache(addr_ranges=system.mem_ranges)
    system.iocache.cpu_side = system.iobus.mem_side_ports
    system.iocache.mem_side = system.membus.cpu_side_ports
elif not args.external_memory_system:
    system.iobridge = Bridge(delay='50ns', ranges=system.mem_ranges)
    system.iobridge.cpu_side_port = system.iobus.mem_side_ports
    system.iobridge.mem_side_port = system.membus.cpu_side_ports

# Sanity check
if args.simpoint_profile:
    if not ObjectList.is_noncaching_cpu(CPUClass):
        fatal("SimPoint generation should be done with atomic cpu")
    if np > 1:
        fatal("SimPoint generation not supported with more than one CPUs")

for i in range(np):
    if args.simpoint_profile:
        system.cpu[i].addSimPointProbe(args.simpoint_interval)
    if args.checker:
        system.cpu[i].addCheckerCpu()
    if not ObjectList.is_kvm_cpu(CPUClass):
        if args.bp_type:
            bpClass = ObjectList.bp_list.get(args.bp_type)
            system.cpu[i].branchPred = bpClass()
        if args.indirect_bp_type:
            IndirectBPClass = ObjectList.indirect_bp_list.get(
Beispiel #6
0
def build_test_system(np):
    cmdline = cmd_line_template()
    if buildEnv['TARGET_ISA'] == "alpha":
        test_sys = makeLinuxAlphaSystem(test_mem_mode,
                                        bm[0],
                                        options.ruby,
                                        cmdline=cmdline)
    elif buildEnv['TARGET_ISA'] == "mips":
        test_sys = makeLinuxMipsSystem(test_mem_mode, bm[0], cmdline=cmdline)
    elif buildEnv['TARGET_ISA'] == "sparc":
        test_sys = makeSparcSystem(test_mem_mode, bm[0], cmdline=cmdline)
    elif buildEnv['TARGET_ISA'] == "x86":
        test_sys = makeLinuxX86System(test_mem_mode,
                                      np,
                                      bm[0],
                                      options.ruby,
                                      cmdline=cmdline)
    elif buildEnv['TARGET_ISA'] == "arm":
        test_sys = makeArmSystem(
            test_mem_mode,
            options.machine_type,
            np,
            bm[0],
            options.dtb_filename,
            bare_metal=options.bare_metal,
            cmdline=cmdline,
            external_memory=options.external_memory_system,
            ruby=options.ruby,
            security=options.enable_security_extensions,
            vio_9p=options.vio_9p,
        )
        if options.enable_context_switch_stats_dump:
            test_sys.enable_context_switch_stats_dump = True
    else:
        fatal("Incapable of building %s full system!", buildEnv['TARGET_ISA'])

    # Set the cache line size for the entire system
    test_sys.cache_line_size = options.cacheline_size

    # Create a top-level voltage domain
    test_sys.voltage_domain = VoltageDomain(voltage=options.sys_voltage)

    # Create a source clock for the system and set the clock period
    test_sys.clk_domain = SrcClockDomain(
        clock=options.sys_clock, voltage_domain=test_sys.voltage_domain)

    # Create a CPU voltage domain
    test_sys.cpu_voltage_domain = VoltageDomain()

    # Create a source clock for the CPUs and set the clock period
    test_sys.cpu_clk_domain = SrcClockDomain(
        clock=options.cpu_clock, voltage_domain=test_sys.cpu_voltage_domain)

    if options.kernel is not None:
        test_sys.kernel = binary(options.kernel)

    if options.script is not None:
        test_sys.readfile = options.script

    if options.lpae:
        test_sys.have_lpae = True

    if options.virtualisation:
        test_sys.have_virtualization = True

    test_sys.init_param = options.init_param

    # For now, assign all the CPUs to the same clock domain
    test_sys.cpu = [
        TestCPUClass(clk_domain=test_sys.cpu_clk_domain, cpu_id=i)
        for i in range(np)
    ]

    if ObjectList.is_kvm_cpu(TestCPUClass) or \
        ObjectList.is_kvm_cpu(FutureClass):
        test_sys.kvm_vm = KvmVM()

    if options.ruby:
        bootmem = getattr(test_sys, '_bootmem', None)
        Ruby.create_system(options, True, test_sys, test_sys.iobus,
                           test_sys._dma_ports, bootmem)

        # Create a seperate clock domain for Ruby
        test_sys.ruby.clk_domain = SrcClockDomain(
            clock=options.ruby_clock, voltage_domain=test_sys.voltage_domain)

        # Connect the ruby io port to the PIO bus,
        # assuming that there is just one such port.
        test_sys.iobus.master = test_sys.ruby._io_port.slave

        for (i, cpu) in enumerate(test_sys.cpu):
            #
            # Tie the cpu ports to the correct ruby system ports
            #
            cpu.clk_domain = test_sys.cpu_clk_domain
            cpu.createThreads()
            cpu.createInterruptController()

            cpu.icache_port = test_sys.ruby._cpu_ports[i].slave
            cpu.dcache_port = test_sys.ruby._cpu_ports[i].slave

            if buildEnv['TARGET_ISA'] in ("x86", "arm"):
                cpu.itb.walker.port = test_sys.ruby._cpu_ports[i].slave
                cpu.dtb.walker.port = test_sys.ruby._cpu_ports[i].slave

            if buildEnv['TARGET_ISA'] in "x86":
                cpu.interrupts[0].pio = test_sys.ruby._cpu_ports[i].master
                cpu.interrupts[0].int_master = test_sys.ruby._cpu_ports[
                    i].slave
                cpu.interrupts[0].int_slave = test_sys.ruby._cpu_ports[
                    i].master

    else:
        if options.caches or options.l2cache:
            # By default the IOCache runs at the system clock
            test_sys.iocache = IOCache(addr_ranges=test_sys.mem_ranges)
            test_sys.iocache.cpu_side = test_sys.iobus.master
            test_sys.iocache.mem_side = test_sys.membus.slave
        elif not options.external_memory_system:
            test_sys.iobridge = Bridge(delay='50ns',
                                       ranges=test_sys.mem_ranges)
            test_sys.iobridge.slave = test_sys.iobus.master
            test_sys.iobridge.master = test_sys.membus.slave

        # Sanity check
        if options.simpoint_profile:
            if not ObjectList.is_noncaching_cpu(TestCPUClass):
                fatal("SimPoint generation should be done with atomic cpu")
            if np > 1:
                fatal(
                    "SimPoint generation not supported with more than one CPUs"
                )

        for i in range(np):
            if options.simpoint_profile:
                test_sys.cpu[i].addSimPointProbe(options.simpoint_interval)
            if options.checker:
                test_sys.cpu[i].addCheckerCpu()
            if not ObjectList.is_kvm_cpu(TestCPUClass):
                if options.bp_type:
                    bpClass = ObjectList.bp_list.get(options.bp_type)
                    test_sys.cpu[i].branchPred = bpClass()
                if options.indirect_bp_type:
                    IndirectBPClass = ObjectList.indirect_bp_list.get(
                        options.indirect_bp_type)
                    test_sys.cpu[i].branchPred.indirectBranchPred = \
                        IndirectBPClass()
            test_sys.cpu[i].createThreads()

        # If elastic tracing is enabled when not restoring from checkpoint and
        # when not fast forwarding using the atomic cpu, then check that the
        # TestCPUClass is DerivO3CPU or inherits from DerivO3CPU. If the check
        # passes then attach the elastic trace probe.
        # If restoring from checkpoint or fast forwarding, the code that does this for
        # FutureCPUClass is in the Simulation module. If the check passes then the
        # elastic trace probe is attached to the switch CPUs.
        if options.elastic_trace_en and options.checkpoint_restore == None and \
            not options.fast_forward:
            CpuConfig.config_etrace(TestCPUClass, test_sys.cpu, options)

        CacheConfig.config_cache(options, test_sys)

        MemConfig.config_mem(options, test_sys)

    return test_sys
Beispiel #7
0
# Create a separate clock domain for the CPUs
system.cpu_clk_domain = SrcClockDomain(
    clock=options.cpu_clock, voltage_domain=system.cpu_voltage_domain)

# If elastic tracing is enabled, then configure the cpu and attach the elastic
# trace probe
if options.elastic_trace_en:
    CpuConfig.config_etrace(CPUClass, system.cpu, options)

# All cpus belong to a common cpu_clk_domain, therefore running at a common
# frequency.
for cpu in system.cpu:
    cpu.clk_domain = system.cpu_clk_domain

if ObjectList.is_kvm_cpu(CPUClass) or ObjectList.is_kvm_cpu(FutureClass):
    if buildEnv['TARGET_ISA'] == 'x86':
        system.kvm_vm = KvmVM()
        for process in multiprocesses:
            process.useArchPT = True
            process.kvmInSE = True
    else:
        fatal("KvmCPU can only be used in SE mode with x86")

# Sanity check
if options.simpoint_profile:
    if not ObjectList.is_noncaching_cpu(CPUClass):
        fatal("SimPoint/BPProbe should be done with an atomic cpu")
    if np > 1:
        fatal("SimPoint generation not supported with more than one CPUs")
Beispiel #8
0
# Create a separate clock domain for the CPUs
system.cpu_clk_domain = SrcClockDomain(
    clock=options.cpu_clock, voltage_domain=system.cpu_voltage_domain)

# If elastic tracing is enabled, then configure the cpu and attach the elastic
# trace probe
if options.elastic_trace_en:
    CpuConfig.config_etrace(CPUClass, system.cpu, options)

# All cpus belong to a common cpu_clk_domain, therefore running at a common
# frequency.
for cpu in system.cpu:
    cpu.clk_domain = system.cpu_clk_domain

if ObjectList.is_kvm_cpu(CPUClass) or ObjectList.is_kvm_cpu(FutureClass):
    if buildEnv['TARGET_ISA'] == 'x86':
        system.kvm_vm = KvmVM()
        for process in multiprocesses:
            process.useArchPT = True
            process.kvmInSE = True
    else:
        fatal("KvmCPU can only be used in SE mode with x86")

# Sanity check
if options.fastmem:
    if CPUClass != AtomicSimpleCPU:
        fatal("Fastmem can only be used with atomic CPU!")
    if (options.caches or options.l2cache):
        fatal("You cannot use fastmem in combination with caches!")