Beispiel #1
0
    }

    torch_losses["total_loss"] = torch_losses["l2_loss"] + \
                                 torch_losses["means_loss"] + \
                                 torch_losses["covariance_loss"]

    torch_losses_take_step(
        loss_dict=torch_losses,
        optimizer=opt_tm,
        loss_names=["means_loss", "covariance_loss", "l2_loss"])

    roll_average(
        loss_dict=torch_losses,
        mets_dict=mets,
        metrics=["means_loss", "covariance_loss", "l2_loss", "total_loss"],
        iteration=iteration)

    if (iteration + 1) % n_stats_to_tensorboard == 0:
        crayon_ship_metrics(
            ccexp, mets,
            ["means_loss", "covariance_loss", "l2_loss", "total_loss"],
            iteration)
    if (iteration + 1) % n_save == 0:
        torch.save(neural_map.state_dict(),
                   f"{save_dir}/neural_map_{iteration}.model")
        eval_iters.append(iteration)

# final evaluation
logger.info("Evaluating transport map at the different iterations")
evaluate(eval_iters, neural_map, save_dir, export_dir, plots_dir, crc_final)
Beispiel #2
0
    torch_losses["total_loss"] = torch_losses["l2_loss"] + \
        torch_losses["critic_loss"]

    if iteration % n_critic == 0:
        torch_losses_take_step(loss_dict=torch_losses,
                               optimizer=opt_tm,
                               loss_names=["total_loss"])
    else:
        torch_losses_take_step(loss_dict=torch_losses,
                               optimizer=opt_critic,
                               loss_names=["critic_loss"],
                               minimize=False)

    roll_average(loss_dict=torch_losses,
                 mets_dict=mets,
                 metrics=["critic_loss", "l2_loss", "total_loss"],
                 iteration=iteration)

    if (iteration + 1) % n_stats_to_tensorboard == 0:
        crayon_ship_metrics(ccexp, mets,
                            ["critic_loss", "l2_loss", "total_loss"],
                            iteration)
    if (iteration + 1) % n_save == 0:
        torch.save(transport_map.state_dict(),
                   f"{save_dir}/neural_map_{iteration}.model")
        eval_iters.append(iteration)

# final evaluation
evaluate(eval_iters, transport_map, save_dir, export_dir, plots_dir, crc_final)