Beispiel #1
0
 def catalog(self):
     Logger().info("Go to the catalog menu")
     try:
         loginAdminPageScreen().connect(Context().environment.login,
                                        Context().environment.password)
         time.sleep(3)
         adminPageScreen().go_to_admin_menu('Catalog')
         time.sleep(5)
         Logger().success("Go to the catalog menu")
     except:
         raise
Beispiel #2
0
 def orders(self):
     Logger().info("Go to the orders menu")
     try:
         loginAdminPageScreen().connect(Context().environment.login,
                                        Context().environment.password)
         time.sleep(3)
         adminPageScreen().go_to_admin_menu('CustomerThreads',
                                            'CustomerThreads_return')
         time.sleep(5)
         Logger().success("Go to the orders menu")
     except:
         raise
Beispiel #3
0
 def __init__(self):
     """
     @param test: an instance of commons.Test
     """
     self._configuration = Configuration()
     if self._logger is None:
         self._logger = Logger(name=__name__,
                               browser_name=self._configuration.browser,
                               language=self._configuration.language)
     self._environmentName = self._configuration.environment
     self.generate_environment()
     self._browserName = self._configuration.browser
Beispiel #4
0
 def build_tensorboard(self):
     from commons.logger import Logger
     self.logger = Logger(self.log_save_path)
Beispiel #5
0
class Solver(object):
    def __init__(self, data_loader, config):

        self.data_loader = data_loader

        self.noise_n = config.noise_n
        self.G_last_act = last_act(config.G_last_act)
        self.D_out_n = config.D_out_n
        self.D_last_act = last_act(config.D_last_act)

        self.G_lr = config.G_lr
        self.D_lr = config.D_lr
        self.beta1 = config.beta1
        self.beta2 = config.beta2
        self.epoch = config.epoch
        self.batch_size = config.batch_size
        self.D_train_step = config.D_train_step
        self.save_image_step = config.save_image_step
        self.log_step = config.log_step
        self.model_save_step = config.model_save_step

        self.model_save_path = config.model_save_path
        self.log_save_path = config.log_save_path
        self.image_save_path = config.image_save_path

        self.use_tensorboard = config.use_tensorboard
        self.pretrained_model = config.pretrained_model
        self.build_model()

        if self.use_tensorboard is not None:
            self.build_tensorboard()
        if self.pretrained_model is not None:
            if len(self.pretrained_model) != 2:
                raise "must have both G and D pretrained parameters, and G is first, D is second"
            self.load_pretrained_model()

    def build_model(self):
        self.G = Generator(self.noise_n, self.G_last_act)
        self.D = Discriminator(self.D_out_n, self.D_last_act)

        self.G_optimizer = torch.optim.Adam(self.G.parameters(), self.G_lr,
                                            [self.beta1, self.beta2])
        self.D_optimizer = torch.optim.Adam(self.D.parameters(), self.D_lr,
                                            [self.beta1, self.beta2])

        if torch.cuda.is_available():
            self.G.cuda()
            self.D.cuda()

    def build_tensorboard(self):
        from commons.logger import Logger
        self.logger = Logger(self.log_save_path)

    def load_pretrained_model(self):
        self.G.load_state_dict(torch.load(self.pretrained_model[0]))
        self.D.load_state_dict(torch.load(self.pretrained_model[1]))

    def reset_grad(self):
        self.G_optimizer.zero_grad()
        self.D_optimizer.zero_grad()

    def to_var(self, x, volatile=False):
        if torch.cuda.is_available():
            x = x.cuda()
        return Variable(x, volatile=volatile)

    def train(self):
        bce_loss = nn.BCELoss()

        print(len(self.data_loader))
        for e in range(self.epoch):
            for i, batch_images in enumerate(self.data_loader):
                batch_size = batch_images.size(0)
                real_x = self.to_var(batch_images)
                noise_x = self.to_var(
                    torch.FloatTensor(noise_vector(batch_size, self.noise_n)))
                real_label = self.to_var(
                    torch.FloatTensor(batch_size).fill_(1.))
                fake_label = self.to_var(
                    torch.FloatTensor(batch_size).fill_(0.))
                # train D
                fake_x = self.G(noise_x)
                real_out = self.D(real_x)
                fake_out = self.D(fake_x.detach())

                D_real = bce_loss(real_out, real_label)
                D_fake = bce_loss(fake_out, fake_label)
                D_loss = D_real + D_fake

                self.reset_grad()
                D_loss.backward()
                self.D_optimizer.step()
                # Log
                loss = {}
                loss['D/loss_real'] = D_real.data[0]
                loss['D/loss_fake'] = D_fake.data[0]
                loss['D/loss'] = D_loss.data[0]

                # Train G
                if (i + 1) % self.D_train_step == 0:
                    # noise_x = self.to_var(torch.FloatTensor(noise_vector(batch_size, self.noise_n)))
                    fake_out = self.D(self.G(noise_x))
                    G_loss = bce_loss(fake_out, real_label)
                    self.reset_grad()
                    G_loss.backward()
                    self.G_optimizer.step()
                    loss['G/loss'] = G_loss.data[0]
                # Print log
                if (i + 1) % self.log_step == 0:
                    log = "Epoch: {}/{}, Iter: {}/{}".format(
                        e + 1, self.epoch, i + 1, len(self.data_loader))
                    for tag, value in loss.items():
                        log += ", {}: {:.4f}".format(tag, value)
                    print(log)
                if self.use_tensorboard:
                    for tag, value in loss.items():
                        self.logger.scalar_summary(
                            tag, value,
                            e * len(self.data_loader) + i + 1)
            # Save images
            if (e + 1) % self.save_image_step == 0:
                noise_x = self.to_var(
                    torch.FloatTensor(noise_vector(32, self.noise_n)))
                fake_image = self.G(noise_x)
                save_image(
                    fake_image.data,
                    os.path.join(self.image_save_path,
                                 "{}_fake.png".format(e + 1)))
            if (e + 1) % self.model_save_step == 0:
                torch.save(
                    self.G.state_dict(),
                    os.path.join(self.model_save_path,
                                 "{}_G.pth".format(e + 1)))
                torch.save(
                    self.D.state_dict(),
                    os.path.join(self.model_save_path,
                                 "{}_D.pth".format(e + 1)))
import sys
import os
import time, traceback
import json
PACKAGE_ROOT = os.path.dirname(
    os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.insert(0, PACKAGE_ROOT)
from commons.logger import Logger
from config.initializers import KAFKA_BROKER, KAFKA_TOPIC, KAFKA_CONSUMER_GROUP_ID
from kafka import KafkaConsumer

logger = Logger().get_logger("test")


class Consumer(object):
    def __init__(self):
        """Tries to establing the Kafka consumer connection"""
        try:
            logger.debug("Creating new kafka consumer using brokers: " +
                         KAFKA_BROKER + ' and topic ' + KAFKA_TOPIC)
            self.kafka_consumer = KafkaConsumer(
                group_id=KAFKA_CONSUMER_GROUP_ID,
                bootstrap_servers=KAFKA_BROKER,
                consumer_timeout_ms=8000)
            self.kafka_consumer.subscribe([KAFKA_TOPIC])
        except KeyError as e:
            logger.error('Missing setting named ' + str(e),
                         {'ex': traceback.format_exc()})
        except:
            logger.error("Couldn't initialize kafka consumer for topic",
                         {'ex': traceback.format_exc()})
Beispiel #7
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import time
import unittest
import sys
import os
sys.path.append(os.path.split(os.path.dirname(__file__))[0])
from commons.browser_engine import BrowserEngine
from pages.baidu_homepage import HomePage
from commons.logger import Logger

log = Logger(logger='baidusearch').get_log()


class BaiduSearch(unittest.TestCase):
    def setUp(self):
        browser = BrowserEngine(self)
        self.driver = browser.open_browser(self)

    def tearDown(self):
        self.driver.quit()

    def test_baidu_search(self):
        homepage = HomePage(self.driver)
        homepage.type_search('selenium')
        homepage.submit_btn()
        time.sleep(2)
        homepage.get_screenshot()
        assert 'selenium' in homepage.get_page_title()
        log.info('test pass.')
Beispiel #8
0
PACKAGE_ROOT = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.insert(0,PACKAGE_ROOT)
import json
import time, traceback
import logging
import websocket
import threading
from commons.logger import Logger
from commons.hit_counter import HitCounter
from commons.redis_connector import RedisConnector  
from websocket import create_connection
from core.producer.producer import Producer
from config.initializers import REDIS_STREAM_KEY

logger = Logger().get_logger("test")
transaction_counter = HitCounter()
time_counter=0

def stream():
    ws = websocket.WebSocket()
    ws = create_connection('wss://ws.blockchain.info/inv')
    ws.send(json.dumps({"op":"unconfirmed_sub"}))
    return ws

def persist_in_redis(r, stream=REDIS_STREAM_KEY):
  try:
    global time_counter
    time_counter += 1
    data = { time_counter: transaction_counter.get_hit() }
    r.xadd(stream, data)
Beispiel #9
0
from time import sleep
import unittest
from pages.login_page import *
from pages.index_page import IndexPage
from cases.basecase import BaseCase
from pages.know_page import KnowPage
from commons.tool import *
from commons.logger import Logger
logger = Logger().logger


class RanKnow(BaseCase):
    '''
    知识排序
    '''
    def test_rank_know(self):
        '''
        排序_验证通过修改时间排序;CRM-ST-BG-013
        :return:
        '''
        # username = "******"
        # password = "******"
        #
        # # 登录
        # sleep(4)
        # lp = LoginPage(self.driver)
        # sleep(2)
        # lp.open()
        # lp.login(username, password)
        # sleep(2)
        # # 去知识页面
Beispiel #10
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import configparser
import os
from commons.logger import Logger

log = Logger(logger='config_read').get_log()


def get_config(section, key):
    try:
        config_file = os.path.split(os.path.dirname(__file__))[0] + '/config/config.ini'
        config = configparser.ConfigParser()
        config.read(config_file, encoding='utf-8')
        return config.get(section, key)
    except Exception as e:
        log.error('config read fail', format(e))
Beispiel #11
0
import os
import sys
import json
from kafka import KafkaProducer
from commons.logger import Logger
from config.initializers import KAFKA_BROKER, KAFKA_TOPIC

PACKAGE_ROOT = os.path.dirname(
    os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.insert(0, PACKAGE_ROOT)
logger = Logger().get_logger("test")


class Producer(object):
    def __init__(self, topic=KAFKA_TOPIC):
        self.producer = KafkaProducer(
            bootstrap_servers=KAFKA_BROKER,
            value_serializer=lambda m: json.dumps(m).encode('ascii'))
        self.topic = topic

    def push(self, json_data):
        self.producer.send(self.topic, json_data)
Beispiel #12
0
class Solver(object):
    def __init__(self, data_loader, config):

        self.data_loader = data_loader

        self.noise_n = config.noise_n
        self.G_last_act = last_act(config.G_last_act)
        self.D_out_n = config.D_out_n
        self.D_last_act = last_act(config.D_last_act)

        self.G_lr = config.G_lr
        self.D_lr = config.D_lr
        self.beta1 = config.beta1
        self.beta2 = config.beta2
        self.epoch = config.epoch
        self.batch_size = config.batch_size
        self.D_train_step = config.D_train_step
        self.save_image_step = config.save_image_step
        self.log_step = config.log_step
        self.model_save_step = config.model_save_step
        self.clip_value = config.clip_value
        self.lambda_gp = config.lambda_gp

        self.model_save_path = config.model_save_path
        self.log_save_path = config.log_save_path
        self.image_save_path = config.image_save_path

        self.use_tensorboard = config.use_tensorboard
        self.pretrained_model = config.pretrained_model
        self.build_model()

        if self.use_tensorboard is not None:
            self.build_tensorboard()
        if self.pretrained_model is not None:
            if len(self.pretrained_model) != 2:
                raise "must have both G and D pretrained parameters, and G is first, D is second"
            self.load_pretrained_model()

    def build_model(self):
        self.G = Generator(self.noise_n, self.G_last_act)
        self.D = Discriminator(self.D_out_n, self.D_last_act)

        self.G_optimizer = torch.optim.Adam(self.G.parameters(), self.G_lr,
                                            [self.beta1, self.beta2])
        self.D_optimizer = torch.optim.Adam(self.D.parameters(), self.D_lr,
                                            [self.beta1, self.beta2])

        if torch.cuda.is_available():
            self.G.cuda()
            self.D.cuda()

    def build_tensorboard(self):
        from commons.logger import Logger
        self.logger = Logger(self.log_save_path)

    def load_pretrained_model(self):
        self.G.load_state_dict(torch.load(self.pretrained_model[0]))
        self.D.load_state_dict(torch.load(self.pretrained_model[1]))

    def denorm(self, x):
        out = (x + 1) / 2
        return out.clamp_(0, 1)

    def reset_grad(self):
        self.G_optimizer.zero_grad()
        self.D_optimizer.zero_grad()

    def to_var(self, x, volatile=False):
        if torch.cuda.is_available():
            x = x.cuda()
        return Variable(x, volatile=volatile)

    def train(self):
        print(len(self.data_loader))
        for e in range(self.epoch):
            for i, batch_images in enumerate(self.data_loader):
                batch_size = batch_images.size(0)
                label = torch.FloatTensor(batch_size)
                real_x = self.to_var(batch_images)
                noise_x = self.to_var(
                    torch.FloatTensor(noise_vector(batch_size, self.noise_n)))
                # train D
                fake_x = self.G(noise_x)
                real_out = self.D(real_x)
                fake_out = self.D(fake_x.detach())

                D_real = -torch.mean(real_out)
                D_fake = torch.mean(fake_out)
                D_loss = D_real + D_fake

                self.reset_grad()
                D_loss.backward()
                self.D_optimizer.step()
                # Log
                loss = {}
                loss['D/loss_real'] = D_real.data[0]
                loss['D/loss_fake'] = D_fake.data[0]
                loss['D/loss'] = D_loss.data[0]

                # choose one in below two
                # Clip weights of D
                # for p in self.D.parameters():
                #     p.data.clamp_(-self.clip_value, clip_value)
                # Gradients penalty, WGAP-GP
                alpha = torch.rand(real_x.size(0), 1, 1,
                                   1).cuda().expand_as(real_x)
                # print(alpha.shape, real_x.shape, fake_x.shape)
                interpolated = Variable(alpha * real_x.data +
                                        (1 - alpha) * fake_x.data,
                                        requires_grad=True)
                gp_out = self.D(interpolated)
                grad = torch.autograd.grad(outputs=gp_out,
                                           inputs=interpolated,
                                           grad_outputs=torch.ones(
                                               gp_out.size()).cuda(),
                                           retain_graph=True,
                                           create_graph=True,
                                           only_inputs=True)[0]

                grad = grad.view(grad.size(0), -1)
                grad_l2norm = torch.sqrt(torch.sum(grad**2, dim=1))
                d_loss_gp = torch.mean((grad_l2norm - 1)**2)
                # Backward + Optimize
                d_loss = self.lambda_gp * d_loss_gp
                self.reset_grad()
                d_loss.backward()
                self.D_optimizer.step()
                # Train G
                if (i + 1) % self.D_train_step == 0:
                    fake_out = self.D(self.G(noise_x))
                    G_loss = -torch.mean(fake_out)
                    self.reset_grad()
                    G_loss.backward()
                    self.G_optimizer.step()
                    loss['G/loss'] = G_loss.data[0]
                # Print log
                if (i + 1) % self.log_step == 0:
                    log = "Epoch: {}/{}, Iter: {}/{}".format(
                        e + 1, self.epoch, i + 1, len(self.data_loader))
                    for tag, value in loss.items():
                        log += ", {}: {:.4f}".format(tag, value)
                    print(log)
                if self.use_tensorboard:
                    for tag, value in loss.items():
                        self.logger.scalar_summary(
                            tag, value,
                            e * len(self.data_loader) + i + 1)
            # Save images
            if (e + 1) % self.save_image_step == 0:
                noise_x = self.to_var(
                    torch.FloatTensor(noise_vector(16, self.noise_n)))
                fake_image = self.G(noise_x)
                save_image(
                    self.denorm(fake_image.data),
                    os.path.join(self.image_save_path,
                                 "{}_fake.png".format(e + 1)))
            if (e + 1) % self.model_save_step == 0:
                torch.save(
                    self.G.state_dict(),
                    os.path.join(self.model_save_path,
                                 "{}_G.pth".format(e + 1)))
                torch.save(
                    self.D.state_dict(),
                    os.path.join(self.model_save_path,
                                 "{}_D.pth".format(e + 1)))
Beispiel #13
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import time
from selenium.common.exceptions import NoSuchElementException
import os
from commons.logger import Logger

log = Logger(logger='basepage').get_log()


class BasePage(object):
    def __init__(self, driver):
        self.driver = driver

    def quit_browser(self):
        self.driver.quit()

    def forward(self):
        self.driver.forward()

    def back(self):
        self.driver.back()

    def wait(self, seconds):
        self.driver.implicity_wait(seconds)
        log.info('implicity wait %s s' % seconds)

    def close(self):
        try:
            self.driver.close()
Beispiel #14
0
#!/usr/bin/env python3
# -*- coding:utf-8 -*-

import configparser
import os
from selenium import webdriver
from commons.logger import Logger
from commons.get_config import get_config

log = Logger(logger='browser_engine').get_log()


class BrowserEngine(object):

    # 浏览器驱动文件
    tool_dir = os.path.split(os.path.dirname(__file__))[0] + '/tools/'
    chrome_driver = tool_dir + 'chromedriver.exe'
    ie_driver = tool_dir + 'IEDriverServer.exe'

    def __init__(self, driver):
        self.driver = driver

    def open_browser(self, driver):
        browser = get_config('browser', 'browser')
        log.info('browser_type: %s' % browser)
        url = get_config('test_server', 'url')
        log.info('Test server: %s' % url)

        if 'ie' in browser.lower():
            self.driver = webdriver.Ie(self.ie_driver)
            log.info('Starting ie browser')
Beispiel #15
0
class Solver(object):
    def __init__(self, data_loader, config):

        self.data_loader = data_loader

        self.noise_n = config.noise_n
        self.G_last_act = last_act(config.G_last_act)
        self.D_out_n = config.D_out_n
        self.D_last_act = last_act(config.D_last_act)

        self.G_lr = config.G_lr
        self.D_lr = config.D_lr
        self.beta1 = config.beta1
        self.beta2 = config.beta2
        self.epoch = config.epoch
        self.batch_size = config.batch_size
        self.D_train_step = config.D_train_step
        self.save_image_step = config.save_image_step
        self.log_step = config.log_step
        self.model_save_step = config.model_save_step
        self.gamma = config.gamma
        self.lambda_k = config.lambda_k

        self.model_save_path = config.model_save_path
        self.log_save_path = config.log_save_path
        self.image_save_path = config.image_save_path

        self.use_tensorboard = config.use_tensorboard
        self.pretrained_model = config.pretrained_model
        self.build_model()

        if self.use_tensorboard is not None:
            self.build_tensorboard()
        if self.pretrained_model is not None:
            if len(self.pretrained_model) != 2:
                raise "must have both G and D pretrained parameters, and G is first, D is second"
            self.load_pretrained_model()

    def build_model(self):
        self.G = Generator(self.noise_n, self.G_last_act)
        self.D = BEGAN_Discriminator(self.noise_n // 2, self.D_last_act)

        self.G_optimizer = torch.optim.Adam(self.G.parameters(), self.G_lr,
                                            [self.beta1, self.beta2])
        self.D_optimizer = torch.optim.Adam(self.D.parameters(), self.D_lr,
                                            [self.beta1, self.beta2])
        if torch.cuda.is_available():
            self.G.cuda()
            self.D.cuda()

    def build_tensorboard(self):
        from commons.logger import Logger
        self.logger = Logger(self.log_save_path)

    def load_pretrained_model(self):
        self.G.load_state_dict(torch.load(self.pretrained_model[0]))
        self.D.load_state_dict(torch.load(self.pretrained_model[1]))

    def denorm(self, x):
        out = (x + 1) / 2
        return out.clamp_(0, 1)

    def reset_grad(self):
        self.G_optimizer.zero_grad()
        self.D_optimizer.zero_grad()

    def to_var(self, x, volatile=False):
        if torch.cuda.is_available():
            x = x.cuda()
        return Variable(x, volatile=volatile)

    def train(self):
        print(len(self.data_loader))
        k = 0.0
        for e in range(self.epoch):
            for i, batch_images in enumerate(self.data_loader):
                batch_size = batch_images.size(0)
                real_x = self.to_var(batch_images)
                noise_x = self.to_var(
                    torch.FloatTensor(noise_vector(batch_size, self.noise_n)))
                # train D
                fake_x = self.G(noise_x)
                real_out = self.D(real_x)
                fake_out = self.D(fake_x.detach())
                # print(real_out.shape, real_x.shape, fake_x.shape, fake_out.shape)
                D_real = torch.mean(torch.abs(real_out - real_x))
                D_fake = torch.mean(torch.abs(fake_out - fake_x))
                D_loss = D_real - k * D_fake

                self.reset_grad()
                D_loss.backward()
                self.D_optimizer.step()
                # Log
                loss = {}
                loss['D/loss_real'] = D_real.data[0]
                loss['D/loss_fake'] = D_fake.data[0]
                loss['D/loss'] = D_loss.data[0]
                # Train G
                if (i + 1) % self.D_train_step == 0:
                    fake_x = self.G(noise_x)
                    fake_out = self.D(fake_x)
                    G_loss = torch.mean(torch.abs(fake_out - fake_x))
                    self.reset_grad()
                    G_loss.backward()
                    self.G_optimizer.step()
                    loss['G/loss'] = G_loss.data[0]
                # Update K
                balance = (self.gamma * D_real - D_fake).data[0]
                k += self.lambda_k * balance
                k = max(min(1, k), 0)
                loss['K'] = k
                loss['M'] = D_real.cpu().data[0] + np.abs(balance.cpu())
                # Print log
                if (i + 1) % self.log_step == 0:
                    log = "Epoch: {}/{}, Iter: {}/{}".format(
                        e + 1, self.epoch, i + 1, len(self.data_loader))
                    for tag, value in loss.items():
                        log += ", {}: {:.4f}".format(tag, value)
                    print(log)
                if self.use_tensorboard:
                    for tag, value in loss.items():
                        self.logger.scalar_summary(
                            tag, value,
                            e * len(self.data_loader) + i + 1)
            # Save images
            if (e + 1) % self.save_image_step == 0:
                noise_x = self.to_var(
                    torch.FloatTensor(noise_vector(32, self.noise_n)))
                fake_image = self.G(noise_x)
                save_image(
                    self.denorm(fake_image.data),
                    os.path.join(self.image_save_path,
                                 "{}_fake.png".format(e + 1)))
            if (e + 1) % self.model_save_step == 0:
                torch.save(
                    self.G.state_dict(),
                    os.path.join(self.model_save_path,
                                 "{}_G.pth".format(e + 1)))
                torch.save(
                    self.D.state_dict(),
                    os.path.join(self.model_save_path,
                                 "{}_D.pth".format(e + 1)))