Beispiel #1
0
    def getMapFromServer(self):
        print "starting"
        resp = self.mapServer()
        print "got from server"
        occupancyGrid = OccupancyGrid(resp.map.info.width,
                                      resp.map.info.height,
                                      resp.map.info.resolution)
        print "make grid"
        occupancyGrid.setFromDataArrayFromMapServer(resp.map.data)
        searchGrid = SearchGrid.fromOccupancyGrid(occupancyGrid)
        print resp.map.data
        gridDrawer = GridDrawer(searchGrid)
        gridDrawer.update()
        gridDrawer.waitForKeyPress()

        pass
Beispiel #2
0
    def createOccupancyGridFromMapServer(self):
        # Get the map service
        rospy.loginfo('Waiting for static_map to become available.')
        rospy.wait_for_service('static_map') 
        self.mapServer = rospy.ServiceProxy('static_map', GetMap)
        rospy.loginfo('Found static_map; requesting map data')

        # Query the map status
        response = self.mapServer()
        map = response.map
        rospy.loginfo('Got map data')

        # Allocate the occupancy grid and set the data from the array sent back by the map server
        self.occupancyGrid = OccupancyGrid(map.info.width, map.info.height, map.info.resolution)
        self.occupancyGrid.setScale(rospy.get_param('plan_scale', 5))
        self.occupancyGrid.setFromDataArrayFromMapServer(map.data)
        self.occupancyGrid.expandObstaclesToAccountForCircularRobotOfRadius(0.2)
Beispiel #3
0
#! /usr/bin/env python

# Import the needed types.
from comp313p_planner_controller.occupancy_grid import OccupancyGrid
from comp313p_planner_controller.best_planner import BestPlanner

# Create the occupancy grid. Syntax is: number of cells in X, number of cells in Y,
# length of each cell in m
occupancyGrid = OccupancyGrid(21, 21, 0.5)

# The cells are indexed starting from 0.
# Set the state of the cells in the range [11,1]-[11,19] to be occupied.
# This corresponds to the "easy case" in the lectures

for y in xrange(0, 19):
    occupancyGrid.setCell(11, y, 1)

# Start and goal cells
start = (3, 18)
goal = (20, 0)

# Create the planner. The first field is the title which will appear in the
# graphics window, the second the occupancy grid used.
planner = BestPlanner('Best First Search Algorithm', occupancyGrid)

# This causes the planner to slow down and pause for things like key entries
planner.setRunInteractively(True)

# This specifies the height of the window drawn showing the occupancy grid. Everything
# should scale automatically to properly preserve the aspect ratio
planner.setWindowHeightInPixels(400)
#! /usr/bin/env python

from comp313p_planner_controller.occupancy_grid import OccupancyGrid
from comp313p_planner_controller.fifo_planner import FIFOPlanner

# Create the occupancy grid
occupancyGrid = OccupancyGrid(21, 21, 0.5)

for y in xrange(1, 19):
    occupancyGrid.setCell(11, y, 1)

# Start and goal cells
start = (3, 18)
goal = (20, 0)

# Create the planner on the original map
planner = FIFOPlanner('Depth First Search Original Occupancy Grid',
                      occupancyGrid)
planner.setWindowHeightInPixels(400)
planner.search(start, goal)
path = planner.extractPathToGoal()

# Now try it on our Minkowski sum map with radius 0.5 (1 cell)
occupancyGrid.expandObstaclesToAccountForCircularRobotOfRadius(0.5)
planner = FIFOPlanner('Depth First Search Robot Radius 0.5', occupancyGrid)
planner.setWindowHeightInPixels(400)
planner.search(start, goal)
path = planner.extractPathToGoal()

# Now try it on our Minkowski sum map with radius 0. Should be the same as the original
occupancyGrid.expandObstaclesToAccountForCircularRobotOfRadius(0)
class PlannerControllerNode(object):
    def __init__(self):
        rospy.init_node('planner_controller', anonymous=True)

        self.waitForGoal = threading.Condition()
        self.waitForDriveCompleted = threading.Condition()
        self.goal = None
        pass

    def createOccupancyGridFromMapServer(self):
        # Get the map service
        rospy.loginfo('Waiting for static_map to become available.')
        rospy.wait_for_service('static_map')
        self.mapServer = rospy.ServiceProxy('static_map', GetMap)
        rospy.loginfo('Found static_map; requesting map data')

        # Query the map status
        response = self.mapServer()
        map = response.map
        rospy.loginfo('Got map data')

        # Allocate the occupancy grid and set the data from the array sent back by the map server
        self.occupancyGrid = OccupancyGrid(map.info.width, map.info.height,
                                           map.info.resolution)
        self.occupancyGrid.setScale(rospy.get_param('plan_scale', 5))
        self.occupancyGrid.setFromDataArrayFromMapServer(map.data)
        self.occupancyGrid.expandObstaclesToAccountForCircularRobotOfRadius(
            0.2)

    def createPlanner(self):
        self.planner = FIFOPlanner('FIFO', self.occupancyGrid)
        self.planner.setPauseTime(0)
        self.planner.windowHeightInPixels = rospy.get_param(
            'maximum_window_height_in_pixels', 700)

    def createRobotController(self):
        self.robotController = Move2GoalController(self.occupancyGrid)

    def handleDriveToGoal(self, goal):
        # Report to the main loop that we have a new goal
        self.waitForGoal.acquire()
        self.goal = goal
        self.waitForGoal.notify()
        self.waitForGoal.release()

        # Wait until the robot has finished driving
        self.waitForDriveCompleted.acquire()
        self.waitForDriveCompleted.wait()
        self.waitForDriveCompleted.release()

        return GoalResponse(True)

    # Run the planner. Note that we do not take account of the robot orientation when planning.
    # The reason is simplicity; adding orientation means we have a full 3D planning problem.
    # As a result, the plan will not be as efficient as it could be.
    def driveToGoal(self, goal):

        # Get the current pose of the robot
        pose = self.robotController.getCurrentPose()
        start = (pose.x, pose.y)

        print "start = " + str(start)
        print "goal = " + str(goal)

        # Call the planner
        startCellCoords = self.occupancyGrid.getCellCoordinatesFromWorldCoordinates(
            start)
        goalCellCoords = self.occupancyGrid.getCellCoordinatesFromWorldCoordinates(
            (goal.x, goal.y))

        print "startCellCoords = " + str(startCellCoords)
        print "goalCellCoords = " + str(goalCellCoords)

        # Exit if we need to
        if rospy.is_shutdown() is True:
            return False

        # Get the plan
        goalReached = self.planner.search(startCellCoords, goalCellCoords)

        # Exit if we need to
        if rospy.is_shutdown() is True:
            return False

        # If we can't reach the goal, give up and return
        if goalReached is False:
            rospy.logwarn("Could not reach the goal at (%d, %d); moving to next goal", \
                          goalCellCoords[0], goalCellCoords[1])
            return False

        # Extract the path
        path = self.planner.extractPathToGoal()

        # Now drive it
        self.robotController.drivePathToGoal(path, goal.theta,
                                             self.planner.getPlannerDrawer())

        return True

    def run(self):

        # First set up the occupancy grid
        self.createOccupancyGridFromMapServer()

        # Create the planner
        self.createPlanner()

        # Set up the robot controller
        self.createRobotController()

        # Set up the wait for the service. Note that we can't directly
        # handle all the driving operations in the service
        # handler. The reason is that the planner can create a GUI,
        # and self MUST run in the main thread. The result is pretty
        # ugly logic and can lead to deadlocking.
        service = rospy.Service('drive_to_goal', Goal, self.handleDriveToGoal)

        print 'Spinning to service goal requests'

        while not rospy.is_shutdown():

            # Wait for a new goal. Allow at most 0.1s, which gives
            # time to check if we are shutting down
            self.waitForGoal.acquire()
            self.waitForGoal.wait(0.1)
            self.waitForGoal.release()

            # If no goal has been allocated, cycle around
            if (self.goal is None):
                continue

            self.driveToGoal(self.goal)
            self.goal = None

            # Signal back to the service handler that we are done
            self.waitForDriveCompleted.acquire()
            self.waitForDriveCompleted.notify()
            self.waitForDriveCompleted.release()