Beispiel #1
0
def orthonormalize_axes(xaxis, yaxis):
    """Corrects xaxis and yaxis to be unit vectors and orthonormal.

    Parameters
    ----------
    xaxis: :class:`Vector` or list of float
    yaxis: :class:`Vector` or list of float

    Returns
    -------
    tuple: (xaxis, yaxis)
        The corrected axes.

    Raises
    ------
    ValueError: If xaxis and yaxis cannot span a plane.

    Examples
    --------
    >>> xaxis = [1, 4, 5]
    >>> yaxis = [1, 0, -2]
    >>> xaxis, yaxis = orthonormalize_axes(xaxis, yaxis)
    >>> allclose(xaxis, [0.1543, 0.6172, 0.7715], tol=0.001)
    True
    >>> allclose(yaxis, [0.6929, 0.4891, -0.5298], tol=0.001)
    True
    """
    xaxis = normalize_vector(xaxis)
    yaxis = normalize_vector(yaxis)
    zaxis = cross_vectors(xaxis, yaxis)
    if not norm_vector(zaxis):
        raise ValueError("Xaxis and yaxis cannot span a plane.")
    yaxis = cross_vectors(normalize_vector(zaxis), xaxis)
    return xaxis, yaxis
def set_blend_radius(print_organizer, d_fillet=10, buffer=0.3):
    """Sets the blend radius (filleting) for the robotic motion.

    Parameters
    ----------
    print_organizer: :class:`compas_slicer.slicers.BasePrintOrganizer`
    d_fillet: float
        Value to attempt to fillet with. Defaults to 10 mm.
    buffer: float
        Buffer to make sure that the blend radius is never too big.
        Defaults to 0.3.
    """

    logger.info("Setting blend radius")

    for printpoint, i, j, k in print_organizer.printpoints_indices_iterator():
        layer_key = 'layer_%d' % i
        path_key = 'path_%d' % j
        neighboring_items = print_organizer.get_printpoint_neighboring_items(
            layer_key, path_key, k)

        if not printpoint.wait_time:
            radius = d_fillet
            if neighboring_items[0]:
                radius = min(
                    radius,
                    norm_vector(
                        Vector.from_start_end(neighboring_items[0].pt,
                                              printpoint.pt)) * buffer)

            if neighboring_items[1]:
                radius = min(
                    radius,
                    norm_vector(
                        Vector.from_start_end(neighboring_items[1].pt,
                                              printpoint.pt)) * buffer)

            radius = round(radius, 5)

        else:
            radius = 0.0  # 0.0 blend radius for points where the robot will pause and wait

        printpoint.blend_radius = radius
Beispiel #3
0
def orthonormalize_axes(xaxis, yaxis):
    """Corrects xaxis and yaxis to be unit vectors and orthonormal.

    Parameters
    ----------
    xaxis: [float, float, float] | :class:`compas.geometry.Vector`
        The first axis.
    yaxis: [float, float, float] | :class:`compas.geometry.Vector`
        The second axis.

    Returns
    -------
    [float, float, float]
        The corrected x axis.
    [float, float, float]
        The corrected y axis.

    Raises
    ------
    ValueError
        If xaxis and yaxis cannot span a plane.

    Examples
    --------
    >>> from compas.geometry import allclose
    >>> xaxis = [1, 4, 5]
    >>> yaxis = [1, 0, -2]
    >>> xaxis, yaxis = orthonormalize_axes(xaxis, yaxis)
    >>> allclose(xaxis, [0.1543, 0.6172, 0.7715], tol=0.001)
    True
    >>> allclose(yaxis, [0.6929, 0.4891, -0.5298], tol=0.001)
    True

    """
    xaxis = normalize_vector(xaxis)
    yaxis = normalize_vector(yaxis)
    zaxis = cross_vectors(xaxis, yaxis)
    if not norm_vector(zaxis):
        raise ValueError("Xaxis and yaxis cannot span a plane.")
    yaxis = cross_vectors(normalize_vector(zaxis), xaxis)
    return xaxis, yaxis
Beispiel #4
0
def decompose_matrix(M):
    """Calculates the components of rotation, translation, scale, shear, and
    perspective of a given transformation matrix M. [1]_

    Parameters
    ----------
    M : list[list[float]]
        The square matrix of any dimension.

    Raises
    ------
    ValueError
        If matrix is singular or degenerative.

    Returns
    -------
    scale : [float, float, float]
        The 3 scale factors in x-, y-, and z-direction.
    shear : [float, float, float]
        The 3 shear factors for x-y, x-z, and y-z axes.
    angles : [float, float, float]
        The rotation specified through the 3 Euler angles about static x, y, z axes.
    translation : [float, float, float]
        The 3 values of translation.
    perspective : [float, float, float, float]
        The 4 perspective entries of the matrix.

    Examples
    --------
    >>> trans1 = [1, 2, 3]
    >>> angle1 = [-2.142, 1.141, -0.142]
    >>> scale1 = [0.123, 2, 0.5]
    >>> T = matrix_from_translation(trans1)
    >>> R = matrix_from_euler_angles(angle1)
    >>> S = matrix_from_scale_factors(scale1)
    >>> M = multiply_matrices(multiply_matrices(T, R), S)
    >>> # M = compose_matrix(scale1, None, angle1, trans1, None)
    >>> scale2, shear2, angle2, trans2, persp2 = decompose_matrix(M)
    >>> allclose(scale1, scale2)
    True
    >>> allclose(angle1, angle2)
    True
    >>> allclose(trans1, trans2)
    True

    References
    ----------
    .. [1] Slabaugh, 1999. *Computing Euler angles from a rotation matrix*.
           Available at: http://www.gregslabaugh.net/publications/euler.pdf

    """
    fabs = math.fabs
    cos = math.cos
    atan2 = math.atan2
    asin = math.asin
    pi = math.pi

    detM = matrix_determinant(M)  # raises ValueError if matrix is not squared
    if detM == 0:
        ValueError("The matrix is singular.")

    Mt = transpose_matrix(M)
    if abs(Mt[3][3]) < _EPS:
        raise ValueError('The element [3,3] of the matrix is zero.')

    for i in range(4):
        for j in range(4):
            Mt[i][j] /= Mt[3][3]

    translation = [M[0][3], M[1][3], M[2][3]]

    # scale, shear, angles
    scale = [0.0, 0.0, 0.0]
    shear = [0.0, 0.0, 0.0]
    angles = [0.0, 0.0, 0.0]

    # copy Mt[:3, :3] into row
    row = [[0, 0, 0] for i in range(3)]
    for i in range(3):
        for j in range(3):
            row[i][j] = Mt[i][j]

    scale[0] = norm_vector(row[0])
    for i in range(3):
        row[0][i] /= scale[0]

    shear[0] = dot_vectors(row[0], row[1])
    for i in range(3):
        row[1][i] -= row[0][i] * shear[0]

    scale[1] = norm_vector(row[1])
    for i in range(3):
        row[1][i] /= scale[1]
    shear[0] /= scale[1]

    shear[1] = dot_vectors(row[0], row[2])
    for i in range(3):
        row[2][i] -= row[0][i] * shear[1]

    shear[2] = dot_vectors(row[1], row[2])
    for i in range(3):
        row[2][i] -= row[0][i] * shear[2]

    scale[2] = norm_vector(row[2])
    for i in range(3):
        row[2][i] /= scale[2]

    shear[1] /= scale[2]
    shear[2] /= scale[2]

    if dot_vectors(row[0], cross_vectors(row[1], row[2])) < 0:
        scale = [-x for x in scale]
        row = [[-x for x in y] for y in row]

    # angles
    if row[0][2] != -1. and row[0][2] != 1.:
        beta1 = asin(-row[0][2])
        # beta2 = pi - beta1
        alpha1 = atan2(row[1][2] / cos(beta1), row[2][2] / cos(beta1))
        # alpha2 = atan2(row[1][2] / cos(beta2), row[2][2] / cos(beta2))
        gamma1 = atan2(row[0][1] / cos(beta1), row[0][0] / cos(beta1))
        # gamma2 = atan2(row[0][1] / cos(beta2), row[0][0] / cos(beta2))
        angles = [alpha1, beta1, gamma1]
    else:
        gamma = 0.
        if row[0][2] == -1.:
            beta = pi / 2.
            alpha = gamma + atan2(row[1][0], row[2][0])
        else:  # row[0][2] == 1
            beta = -pi / 2.
            alpha = -gamma + atan2(-row[1][0], -row[2][0])
        angles = [alpha, beta, gamma]

    # perspective
    if fabs(Mt[0][3]) > _EPS and fabs(Mt[1][3]) > _EPS and fabs(
            Mt[2][3]) > _EPS:
        P = deepcopy(Mt)
        P[0][3], P[1][3], P[2][3], P[3][3] = 0.0, 0.0, 0.0, 1.0
        Ptinv = matrix_inverse(transpose_matrix(P))
        perspective = multiply_matrix_vector(
            Ptinv, [Mt[0][3], Mt[1][3], Mt[2][3], Mt[3][3]])
    else:
        perspective = [0.0, 0.0, 0.0, 1.0]

    return scale, shear, angles, translation, perspective