Beispiel #1
0
def raceuma_info_render(shap_df_win, shap_df_jiku, shap_df_are):
    # 勝ち根拠
    fig1 = wp.cp_controlling_text_fontsize_with_uniformtext_win_basis(
        shap_df_win)
    # 軸根拠
    fig2 = wp.cp_controlling_text_fontsize_with_uniformtext_jiku_basis(
        shap_df_jiku)
    # 荒れ根拠
    fig3 = wp.cp_controlling_text_fontsize_with_uniformtext_are_basis(
        shap_df_are)

    return [
        dbc.Row([
            wp.dbc_graph("fig1", 4, fig1, "勝ち根拠", 300, bottom=100),
            wp.dbc_graph("fig2", 4, fig2, "軸根拠", 300, bottom=100),
            wp.dbc_graph("fig3", 4, fig3, "荒れ根拠", 300, bottom=100),
        ],
                className="h-50"),
    ]
Beispiel #2
0
def race_result_render(race_df, raceuma_df, bet_df, haraimodoshi_dict):
    race_sr = race_df.iloc[0]
    raceuma_df = raceuma_df.sort_values("タイム指数")
    raceuma_df.loc[:, "馬名表用"] = raceuma_df["馬名"]
    raceuma_df.loc[:, "馬名"] = raceuma_df.apply(
        lambda x: x["馬名"] + "<br>(" + str(x["単勝人気"]) + "番人気 " + str(x[
            "確定着順"]) + "着 " + str(x["馬券評価順位"]) + "位)",
        axis=1)
    haraimodoshi_df = pd.DataFrame()
    for key, val in haraimodoshi_dict.items():
        if len(val.index) != 0:
            val.loc[:, "式別"] = key
            haraimodoshi_df = haraimodoshi_df.append(val)

    # 得点
    fig1 = wp.cp_basic_horizontal_bar_chart_score(raceuma_df)
    # 得点バブル
    #fig3_df = raceuma_df[["確定着順", "デフォルト得点", "SCORE", "得点V3", "馬名"]].sort_values("確定着順")
    #fig3 = wp.cp_buble_chart_score(fig3_df)

    # テーブル
    fig4_df = raceuma_df[[
        "枠番", "馬番", "馬名表用", "性別コード", "タイム", "タイム指数", "デフォルト得点", "得点", "馬券評価順位",
        "単勝オッズ", "単勝人気", "複勝オッズ1", "複勝オッズ2", "展開コード", "騎手名", "馬齢", "調教師名",
        "負担重量", "馬体重", "確定着順", "コーナー順位1", "コーナー順位2", "コーナー順位3", "コーナー順位4",
        "上がりタイム", "所属", "得点V3", "WIN_RATE", "JIKU_RATE", "ANA_RATE",
        "WIN_RANK", "JIKU_RANK", "ANA_RANK", "SCORE", "SCORE_RANK", "CK1_RATE",
        "CK2_RATE", "CK3_RATE", "CK1_RANK", "CK2_RANK", "CK3_RANK"
    ]].sort_values("タイム指数", ascending=False)

    # 払戻・投票
    if len(haraimodoshi_df.index) != 0:
        fig5_haraimodoshi_df = haraimodoshi_df[["式別", "馬番", "払戻"]]
    else:
        fig5_haraimodoshi_df = haraimodoshi_df
    fig5_bet_df = bet_df[["式別名", "番号", "金額", "結果", "合計"]]

    # タイム指数、予想タイム指数
    fig6 = wp.cp_basic_dot_plot_time_record(raceuma_df)
    # タイム指数、単勝オッズ
    fig10 = wp.cp_bar_chart_with_line_plot_time_record_tansho(raceuma_df)
    # ラップ
    #fig11 = wp.cp_simple_line_rap(race_sr, 500)
    # 単勝支持率
    fig12 = wp.cp_pie_chart_tansho_approval_rate(raceuma_df)

    return dcc.Loading(
        id="race-result-render-loading",
        children=[
            dbc.Row([
                wp.dbc_race_info(race_sr, 8),
                wp.dbc_race_result(race_sr, haraimodoshi_df, 4),
            ],
                    className="h-8",
                    no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig12", 4, fig12, "単勝支持率", 400),
                wp.dbc_graph("fig10", 4, fig10, "タイム指数、単勝オッズ", 500),
                wp.dbc_haraimodoshi_table("fig5_1", 2, fig5_haraimodoshi_df),
                wp.dbc_bet_table("fig5_2", 2, fig5_bet_df),
            ],
                    className="h-50",
                    no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig1", 6, fig1, "得点", 400),
                wp.dbc_graph("fig6", 6, fig6, "タイム指数、予想タイム指数", 500),
            ],
                    className="h-50",
                    no_gutters=True),
            #            dbc.Row([
            #                wp.dbc_graph("fig3", 6, fig3, "得点バブル", 500),
            #                wp.dbc_graph("fig11", 4, fig11, "ラップ", 400),
            #            ], className="h-50", no_gutters=True),
            wp.dbc_race_result_table("fig4", 16, fig4_df)
        ])
Beispiel #3
0
def toppage_render(race_df, raceuma_df, bet_df, haraimodoshi_dict):
    daily_bet_df = cd.get_daily_bet_df(bet_df)
    daily_rank1_raceuma_df = cd.get_daily_rank1_raceuma_df(raceuma_df)
    summary_bet_df = cd.get_summary_bet_df(bet_df)
    place_bet_df = cd.get_place_bet_df(bet_df)

    prev_daily_bet_df = daily_bet_df.drop(daily_bet_df.tail(1).index)
    prev_daily_rank1_raceuma_df = daily_rank1_raceuma_df.drop(
        daily_bet_df.tail(1).index)
    place_bet_df = place_bet_df[place_bet_df["金額"] != 0].copy()
    raceuma_df.loc[:, "競走馬コード"] = raceuma_df.apply(
        lambda x: str(x["競走コード"]) + str(x["馬番"]).zfill(2), axis=1)

    # 回収
    fig1 = wp.cp_data_cards_return(daily_bet_df, prev_daily_bet_df)
    # 回収率
    fig2 = wp.cp_showing_information_above_return_rate(daily_bet_df,
                                                       prev_daily_bet_df)
    # 単勝回収率
    fig3 = wp.cp_add_steps_threshold_anda_delta_tansho_return(
        daily_rank1_raceuma_df, prev_daily_rank1_raceuma_df)
    # 複勝回収率
    fig4 = wp.cp_add_steps_threshold_anda_delta_fukusho_return(
        daily_rank1_raceuma_df, prev_daily_rank1_raceuma_df)
    # 残高推移1
    fig5 = wp.cp_time_series_with_range_selector_buttions_balance_change(
        daily_bet_df)
    # 残高推移2
    fig6 = wp.cp_simple_waterfall_chart_balance_change(summary_bet_df)
    # 場所別回収率的中率払戻
    fig7 = wp.cp_buble_chart_place_return_hit(place_bet_df)
    # 券種毎回収率
    fig8 = wp.cp_multi_bullet(summary_bet_df)
    # 得点1位着順
    fig9 = wp.cp_pie_chart_score_1(raceuma_df)
    # 場所別単複回収率・的中率
    fig10 = wp.cp_multiple_line_and_bar_chart_place_tanpuku_return(
        race_df, raceuma_df)
    # 場所別馬券回収率・的中率
    fig11 = wp.cp_multiple_line_and_bar_chart_place_bet_return(bet_df)
    # 馬連的中1
    fig12 = wp.cp_basic_funnel_plot_umaren_1(race_df, raceuma_df,
                                             haraimodoshi_dict)
    # 馬連的中2
    fig13 = wp.cp_basic_funnel_plot_umaren_2(race_df, raceuma_df,
                                             haraimodoshi_dict)
    # 馬単的中1
    fig14 = wp.cp_basic_funnel_plot_umatan_1(race_df, raceuma_df,
                                             haraimodoshi_dict)
    # 馬単的中2
    fig15 = wp.cp_basic_funnel_plot_umatan_2(race_df, raceuma_df,
                                             haraimodoshi_dict)
    # 馬単的中3
    fig16 = wp.cp_basic_funnel_plot_umatan_3(race_df, raceuma_df,
                                             haraimodoshi_dict)
    # ワイド的中1
    fig17 = wp.cp_basic_funnel_plot_wide_1(race_df, raceuma_df,
                                           haraimodoshi_dict)
    # 馬連配当分布
    fig18 = wp.cp_choosing_the_algorithm_umaren_dist(race_df,
                                                     haraimodoshi_dict)
    # 馬単配当分布
    fig19 = wp.cp_choosing_the_algorithm_umatan_dist(race_df,
                                                     haraimodoshi_dict)
    # ワイド配当分布
    fig20 = wp.cp_choosing_the_algorithm_wide_dist(race_df, haraimodoshi_dict)
    # 三連複配当分布
    fig21 = wp.cp_choosing_the_algorithm_sanrenpuku_dist(
        race_df, haraimodoshi_dict)

    return dcc.Loading(
        id="top-detail-loading",
        children=[
            dbc.Row([
                wp.dbc_graph("fig1", 2, fig1, "回収", 130),
                wp.dbc_graph("fig2", 4, fig2, "回収率", 130),
                wp.dbc_graph("fig9", 2, fig9, "得点1位着順", 130),
                wp.dbc_graph("fig3", 2, fig3, "単勝回収率", 130),
                wp.dbc_graph("fig4", 2, fig4, "複勝回収率", 130),
            ],
                    className="h-20",
                    no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig8", 3, fig8, "券種毎回収率", 450),
                dbc.Col([
                    dbc.Row(wp.dbc_graph("fig5", 12, fig5, "残高推移", 250), ),
                    dbc.Row(wp.dbc_graph("fig6", 12, fig6, "", 200), )
                ],
                        width=4),
                wp.dbc_graph("fig7", 5, fig7, "場所別回収率的中率払戻", 450),
            ],
                    className="h-50",
                    no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig10", 6, fig10, "場所別単複回収率・的中率", 300),
                wp.dbc_graph("fig11", 6, fig11, "場所別馬券回収率・的中率", 300),
            ],
                    className="h-50",
                    no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig12", 2, fig12, "馬連的中1", 300),
                wp.dbc_graph("fig13", 2, fig13, "馬連的中2", 300),
                wp.dbc_graph("fig14", 2, fig14, "馬単的中1", 300),
                wp.dbc_graph("fig15", 2, fig15, "馬単的中2", 300),
                wp.dbc_graph("fig16", 2, fig16, "馬単的中3", 300),
                wp.dbc_graph("fig17", 2, fig17, "ワイド的中1", 300),
            ],
                    className="h-50",
                    no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig18", 6, fig18, "馬連配当分布", 250),
                wp.dbc_graph("fig19", 6, fig19, "馬単配当分布", 250),
            ],
                    className="h-50",
                    no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig20", 6, fig20, "ワイド配当分布", 250),
                wp.dbc_graph("fig21", 6, fig21, "三連複配当分布", 250),
            ],
                    className="h-50",
                    no_gutters=True),
        ])
Beispiel #4
0
def race_info_render(race_df, raceuma_df, shap_df_umaren_are,
                     shap_df_umatan_are, shap_df_sanrenpuku_are):
    race_sr = race_df.iloc[0]
    term_start_date = "2019-12-01"
    term_end_date = race_sr["月日"].strftime("%Y-%m-%d")
    ketto_toroku_bango_list = raceuma_df["血統登録番号"].tolist()
    raceuma_prev_df = GetData.get_raceuma_prev_df(term_start_date,
                                                  term_end_date,
                                                  ketto_toroku_bango_list)
    raceuma_prev_df = pd.merge(raceuma_df[["血統登録番号", "馬名"]],
                               raceuma_prev_df,
                               on="血統登録番号")
    raceuma_df = raceuma_df.sort_values("馬番", ascending=False)
    raceuma_prev_df = raceuma_prev_df.sort_values("馬名", ascending=False)

    # 得点
    fig1 = wp.cp_basic_horizontal_bar_chart_score(raceuma_df)
    # 最大得点分布
    #fig2 = wp.cp_basic_dot_plot_max_score(raceuma_df)
    # 得点バブル
    #fig3 = wp.cp_buble_chart_score(raceuma_df.sort_values("馬番"))
    # レーダーチャート
    fig4 = wp.cp_multiple_trace_rader_chart_score(raceuma_df.sort_values("馬番"))
    # 先行率
    fig5 = wp.cp_basic_horizontal_box_plot_senko_rate(raceuma_prev_df)
    # タイム指数
    fig6 = wp.cp_basic_horizontal_box_plot_time_score(raceuma_prev_df)

    # テーブルデータ
    fig7_df = raceuma_df[[
        "枠番", "馬番", "馬名", "性別コード", "馬齢", "負担重量", "予想タイム指数順位", "予想タイム指数",
        "デフォルト得点", "得点", "馬券評価順位", "先行指数", "予想展開", "騎手名", "調教師名", "所属", "得点V3",
        "WIN_RATE", "JIKU_RATE", "ANA_RATE", "WIN_RANK", "JIKU_RANK",
        "ANA_RANK", "SCORE", "SCORE_RANK", "CK1_RATE", "CK2_RATE", "CK3_RATE",
        "CK1_RANK", "CK2_RANK", "CK3_RANK"
    ]].sort_values("馬番")

    # 馬連荒れ根拠
    #fig8 = wp.cp_controlling_text_fontsize_with_uniformtext_umaren_basis(shap_df_umaren_are)
    # 馬単荒れ根拠
    #fig9 = wp.cp_controlling_text_fontsize_with_uniformtext_umatan_basis(shap_df_umatan_are)
    # 三連複荒れ根拠
    #fig10 = wp.cp_controlling_text_fontsize_with_uniformtext_sanrenpuku_basis(shap_df_sanrenpuku_are)

    raceuma_dropdown_option = raceuma_df[["馬名", "馬番"]].rename(columns={
        "馬名": "label",
        "馬番": "value"
    }).to_dict(orient='record')
    return dcc.Loading(
        id="race-info-render-loading",
        children=[
            dbc.Row([
                wp.dbc_race_info(race_sr, 12),
            ], className="h-8"),
            #            dbc.Row([
            #                wp.dbc_graph("fig8", 4, fig8, "馬連荒れ根拠", 300, bottom=100),
            #                wp.dbc_graph("fig9", 4, fig9, "馬単荒れ根拠", 300, bottom=100),
            #                wp.dbc_graph("fig10", 4, fig10, "三連複荒れ根拠", 300, bottom=100),
            #            ], className="h-30", no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig1", 6, fig1, "得点", 500),
                wp.dbc_graph("fig4", 6, fig4, "レーダーチャート", 500),
            ],
                    className="h-50",
                    no_gutters=True),
            #            dbc.Row([
            #                wp.dbc_graph("fig2", 6, fig2, "最大得点分布", 500),
            #                wp.dbc_graph("fig3", 6, fig3, "得点バブル", 500),
            #            ], className="h-50", no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig5", 6, fig5, "先行率", 500),
                wp.dbc_graph("fig6", 6, fig6, "タイム指数", 500),
            ],
                    className="h-50",
                    no_gutters=True),
            wp.dbc_race_info_table("fig7", 16, fig7_df),
            dbc.Row([
                wp.dbc_title("得点根拠", 6),
                dcc.Dropdown(id="raceinfo-dropdown-raceuma",
                             options=raceuma_dropdown_option,
                             style={"width": "300px"}),
            ],
                    className="h-8"),
            dcc.Loading(id="raceuma-info-loading",
                        children=[html.Div(id="raceinfo-raceuma-detail")])
        ])
Beispiel #5
0
def return_analytics_render(raceuma_df, bet_df, haraimodoshi_dict):
    daily_summary_bet_df = cd.get_daily_summary_bet_df(bet_df)

    # 単勝
    fig1 = wp.cp_add_steps_threshold_anda_delta_tansho(daily_summary_bet_df)
    # 複勝
    fig2 = wp.cp_add_steps_threshold_anda_delta_fukusho(daily_summary_bet_df)
    # 馬連
    fig3 = wp.cp_add_steps_threshold_anda_delta_umaren(daily_summary_bet_df)
    # 馬単
    fig4 = wp.cp_add_steps_threshold_anda_delta_umatan(daily_summary_bet_df)
    # ワイド
    fig5 = wp.cp_add_steps_threshold_anda_delta_wide(daily_summary_bet_df)
    # 三連複
    fig6 = wp.cp_add_steps_threshold_anda_delta_sanrenpuku(
        daily_summary_bet_df)
    # 月別券種別回収率推移
    #fig7 = wp.cp_label_lines_with_annotations_bet_return_balance(bet_df)
    # 券種別配当分布
    #fig8 = wp.cp_visualizing_the_distribution_haraimodoshi_dist(haraimodoshi_dict)
    # 場所別回収的中率
    fig9 = wp.cp_bar_chart_with_line_plot_place_bet_return(bet_df)
    # 単勝配当分布
    #fig10 = wp.cp_pie_chart_tansho_dist(haraimodoshi_dict)
    # 複勝配当分布
    #fig11 = wp.cp_pie_chart_fukusho_dist(haraimodoshi_dict)
    # 馬連配当分布
    #fig12 = wp.cp_pie_chart_umaren_dist(haraimodoshi_dict)
    # 馬単配当分布
    #fig13 = wp.cp_pie_chart_umatan_dist(haraimodoshi_dict)
    # ワイド配当分布
    #fig14 = wp.cp_pie_chart_wide_dist(haraimodoshi_dict)
    # 三連複配当分布
    #fig15 = wp.cp_pie_chart_sanrenpuku_dist(haraimodoshi_dict)
    # 券種別配当分布比較
    fig16 = wp.cp_choosing_the_algorithm_haraimodoshi_dist(haraimodoshi_dict)
    # 券種別配当中央値比較
    #fig17 = wp.cp_styled_categorical_dot_plot_haraimodoshi_median(haraimodoshi_dict)

    return dcc.Loading(
        id="return-analytics-render-loading",
        children=[
            dbc.Row([
                wp.dbc_graph("fig1", 2, fig1, "単勝", 130),
                wp.dbc_graph("fig2", 2, fig2, "複勝", 130),
                wp.dbc_graph("fig3", 2, fig3, "馬連", 130),
                wp.dbc_graph("fig4", 2, fig4, "馬単", 130),
                wp.dbc_graph("fig5", 2, fig5, "ワイド", 130),
                wp.dbc_graph("fig6", 2, fig6, "三連複", 130),
            ],
                    className="h-20",
                    no_gutters=True),
            #            dbc.Row([
            #                wp.dbc_graph("fig10", 2, fig10, "単勝配当分布", 200),
            #                wp.dbc_graph("fig11", 2, fig11, "複勝配当分布", 200),
            #                wp.dbc_graph("fig12", 2, fig12, "馬連配当分布", 200),
            #                wp.dbc_graph("fig13", 2, fig13, "馬単配当分布", 200),
            #                wp.dbc_graph("fig14", 2, fig14, "ワイド配当分布", 200),
            #                wp.dbc_graph("fig15", 2, fig15, "三連複配当分布", 200),
            #            ], className="h-20", no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig9", 5, fig9, "場所別回収的中率", 600),
                wp.dbc_graph("fig16", 7, fig16, "券種別配当分布比較", 600),
            ],
                    className="h-50",
                    no_gutters=True),
            #            dbc.Row([
            #                wp.dbc_graph("fig7", 4, fig7, "月別券種別回収率推移", 400),
            #                wp.dbc_graph("fig8", 4, fig8, "券種別配当分布", 400),
            #                wp.dbc_graph("fig17", 5, fig17, "券種別配当中央値比較", 400),
            #            ], className="h-50", no_gutters=True)
        ])
Beispiel #6
0
def graph_example():
    fig01 = gp.simple_line()
    fig02 = gp.line_with_column_encoding_color()
    fig03 = gp.label_lines_with_annotations()
    fig04 = gp.filled_line()
    fig05 = gp.bar_chart()
    fig06 = gp.customized_bar_chart()
    fig07 = gp.facetted_subplots()
    fig08 = gp.basic_bar_chart_with_plotly()
    fig09 = gp.grouped_bar_chart()
    fig10 = gp.stacked_bar_chart()
    fig11 = gp.bar_chart_with_hover_text()
    fig12 = gp.bar_chart_with_direct_labels()
    fig13 = gp.controlling_text_fontsize_with_uniformtext()
    fig14 = gp.pie_chart()
    fig15 = gp.buble_chart()
    fig16 = gp.basic_dot_plot()
    fig17 = gp.styled_categorical_dot_plot()
    fig18 = gp.basic_horizontal_bar_chart()
    fig19 = gp.color_palette_for_bar_chart()
    fig20 = gp.bar_chart_with_line_plot()
    fig21 = gp.sunburst_of_a_rectangular()
    fig22 = gp.sankey_diagram()
    fig23 = gp.treemap()
    fig24 = gp.bar_chart_with_error_bars()
    fig25 = gp.display_the_underlying_data()
    fig26 = gp.choosing_the_algorithm()
    fig27 = gp.difference_between_quartile_algorithms()
    fig28 = gp.basic_horizontal_box_plot()
    fig29 = gp.grouped_box_plot()
    fig30 = gp.rainbow_box_plot()

    return \
        dbc.Container([
            dbc.Row([
                    wp.dbc_top_title("グラフサンプル")
                ],className="h-30"),
            dbc.Row([
                    wp.dbc_title("simple_line", 4),
                    wp.dbc_title("line_with_column_encoding_color", 4),
                    wp.dbc_title("label_lines_with_annotations", 4),
                ], className="h-8"),
            dbc.Row([
                    wp.dbc_graph("fig01", 4, fig01),
                    wp.dbc_graph("fig02", 4, fig02),
                    wp.dbc_graph("fig03", 4, fig03),
                ], className="h-50"),
            dbc.Row([
                    wp.dbc_title("filled_line", 4),
                    wp.dbc_title("bar_chart", 4),
                    wp.dbc_title("customized_bar_chart", 4),
                ], className="h-8"),
            dbc.Row([
                    wp.dbc_graph("fig04", 4, fig04),
                    wp.dbc_graph("fig05", 4, fig05),
                    wp.dbc_graph("fig06", 4, fig06),
                ], className="h-50"),
            dbc.Row([
                    wp.dbc_title("facetted_subplots", 4),
                    wp.dbc_title("basic_bar_chart_with_plotly", 4),
                    wp.dbc_title("grouped_bar_chart", 4),
                ], className="h-8"),
            dbc.Row([
                    wp.dbc_graph("fig07", 4, fig07),
                    wp.dbc_graph("fig08", 4, fig08),
                    wp.dbc_graph("fig09", 4, fig09),
                ], className="h-50"),
            dbc.Row([
                    wp.dbc_title("stacked_bar_chart", 4),
                    wp.dbc_title("bar_chart_with_hover_text", 4),
                    wp.dbc_title("bar_chart_with_direct_labels", 4),
                ], className="h-8"),
            dbc.Row([
                    wp.dbc_graph("fig10", 4, fig10),
                    wp.dbc_graph("fig11", 4, fig11),
                    wp.dbc_graph("fig12", 4, fig12),
                ], className="h-50"),
            dbc.Row([
                    wp.dbc_title("controlling_text_fontsize_with_uniformtext", 4),
                    wp.dbc_title("pie_chart", 4),
                    wp.dbc_title("buble_chart", 4),
                ], className="h-8"),
            dbc.Row([
                    wp.dbc_graph("fig13", 4, fig13),
                    wp.dbc_graph("fig14", 4, fig14),
                    wp.dbc_graph("fig15", 4, fig15),
                ], className="h-50"),
            dbc.Row([
                    wp.dbc_title("basic_dot_plot", 4),
                    wp.dbc_title("styled_categorical_dot_plot", 4),
                    wp.dbc_title("basic_horizontal_bar_chart", 4),
                ], className="h-8"),
            dbc.Row([
                    wp.dbc_graph("fig16", 4, fig16),
                    wp.dbc_graph("fig17", 4, fig17),
                    wp.dbc_graph("fig18", 4, fig18),
                ], className="h-50"),
            dbc.Row([
                    wp.dbc_title("color_palette_for_bar_chart", 4),
                    wp.dbc_title("bar_chart_with_line_plot", 4),
                    wp.dbc_title("sunburst_of_a_rectangular", 4),
                ], className="h-8"),
            dbc.Row([
                    wp.dbc_graph("fig19", 4, fig19),
                    wp.dbc_graph("fig20", 4, fig20),
                    wp.dbc_graph("fig21", 4, fig21),
                ], className="h-50"),
            dbc.Row([
                    wp.dbc_title("sankey_diagram", 4),
                    wp.dbc_title("treemap", 4),
                    wp.dbc_title("bar_chart_with_error_bars", 4),
                ], className="h-8"),
            dbc.Row([
                    wp.dbc_graph("fig22", 4, fig22),
                    wp.dbc_graph("fig23", 4, fig23),
                    wp.dbc_graph("fig24", 4, fig24),
                ], className="h-50"),
            dbc.Row([
                    wp.dbc_title("display_the_underlying_data", 4),
                    wp.dbc_title("choosing_the_algorithm", 4),
                    wp.dbc_title("difference_between_quartile_algorithms", 4),
                ], className="h-8"),
            dbc.Row([
                    wp.dbc_graph("fig25", 4, fig25),
                    wp.dbc_graph("fig26", 4, fig26),
                    wp.dbc_graph("fig27", 4, fig27),
                ], className="h-50"),
            dbc.Row([
                    wp.dbc_title("basic_horizontal_box_plot", 4),
                    wp.dbc_title("grouped_box_plot", 4),
                    wp.dbc_title("rainbow_box_plot", 4),
                ], className="h-8"),
            dbc.Row([
                    wp.dbc_graph("fig28", 4, fig28),
                    wp.dbc_graph("fig29", 4, fig29),
                    wp.dbc_graph("fig30", 4, fig30),
                ], className="h-50"),
        ],
        style={"height": "90vh"},
        fluid=True
        )
Beispiel #7
0
def kpi_analytics_render(race_df, raceuma_df, bet_df, haraimodoshi_dict, end_date):
    raceuma_df.loc[:, "競走馬コード"] = raceuma_df.apply(lambda x : str(x["競走コード"]) + str(x["馬番"]).zfill(2), axis=1)

    # 得点1位着順
    fig1 = wp.cp_pie_chart_score_1(raceuma_df)

    # 単勝回収率
    fig2_df = raceuma_df[raceuma_df["馬券評価順位"] == 1].copy()
    fig2_df_diff = fig2_df[fig2_df["年月日"] != end_date]
    fig2 = wp.cp_add_steps_threshold_anda_delta_tansho_return(fig2_df, fig2_df_diff)

    # 複勝回収率
    fig3_df = raceuma_df[raceuma_df["馬券評価順位"] == 1].copy()
    fig3_df_diff = fig3_df[fig3_df["年月日"] != end_date]
    fig3 = wp.cp_add_steps_threshold_anda_delta_fukusho_return(fig3_df, fig3_df_diff)

    # 1番人気
    fig4 = wp.cp_pie_chart_ninki_1(raceuma_df)

    # 単勝回収率
    fig5_df = raceuma_df[raceuma_df["単勝人気"] == 1].copy()
    fig5_df_diff = fig5_df[fig5_df["年月日"] != end_date]
    fig5 = wp.cp_add_steps_threshold_anda_delta_tansho_return(fig5_df, fig5_df_diff)

    # 複勝回収率
    fig6_df = raceuma_df[raceuma_df["単勝人気"] == 1].copy()
    fig6_df_diff = fig6_df[fig6_df["年月日"] != end_date]
    fig6 = wp.cp_add_steps_threshold_anda_delta_fukusho_return(fig6_df, fig6_df_diff)

    # 場所別単複回収率・的中率
    #fig7 = wp.cp_multiple_line_and_bar_chart_place_tanpuku_return(race_df, raceuma_df)
    # 場所別馬券回収率・的中率
    #fig8 = wp.cp_multiple_line_and_bar_chart_place_bet_return(bet_df)
    # 馬連的中1
    fig10 = wp.cp_stacked_funnel_plot_umaren_1(race_df, raceuma_df, haraimodoshi_dict)
    # 馬連的中2
    fig11 = wp.cp_stacked_funnel_plot_umaren_2(race_df, raceuma_df, haraimodoshi_dict)
    # 馬単的中1
    fig12 = wp.cp_stacked_funnel_plot_umatan_1(race_df, raceuma_df, haraimodoshi_dict)
    # 馬単的中2
    fig13 = wp.cp_stacked_funnel_plot_umatan_2(race_df, raceuma_df, haraimodoshi_dict)
    # 馬単的中3
    fig14 = wp.cp_stacked_funnel_plot_umatan_3(race_df, raceuma_df, haraimodoshi_dict)
    # ワイド的中1
    fig15 = wp.cp_stacked_funnel_plot_wide_1(race_df, raceuma_df, haraimodoshi_dict)

    # 馬連的中1
    fig20 = wp.cp_parallel_categories_diagram_umaren_1(race_df, raceuma_df, haraimodoshi_dict)
    # 馬連的中2
    fig21 = wp.cp_parallel_categories_diagram_umaren_2(race_df, raceuma_df, haraimodoshi_dict)
    # 馬単的中1
    fig22 = wp.cp_parallel_categories_diagram_umatan_1(race_df, raceuma_df, haraimodoshi_dict)
    # 馬単的中2
    fig23 = wp.cp_parallel_categories_diagram_umatan_2(race_df, raceuma_df, haraimodoshi_dict)
    # 馬単的中3
    fig24 = wp.cp_parallel_categories_diagram_umatan_3(race_df, raceuma_df, haraimodoshi_dict)
    # ワイド的中1
    fig25 = wp.cp_parallel_categories_diagram_wide_1(race_df, raceuma_df, haraimodoshi_dict)

    return dcc.Loading(id="kpi-analytics-lender-loading", children=[
            dbc.Row([
                wp.dbc_graph("fig1", 2, fig1, "得点1位着順", 130),
                wp.dbc_graph("fig2", 2, fig2, "単勝回収率", 130),
                wp.dbc_graph("fig3", 2, fig3, "複勝回収率", 130),
                wp.dbc_graph("fig4", 2, fig4, "1番人気", 130),
                wp.dbc_graph("fig5", 2, fig5, "単勝回収率", 130),
                wp.dbc_graph("fig6", 2, fig6, "複勝回収率", 130),
            ], className="h-20", no_gutters=True),
#            dbc.Row([
#                wp.dbc_graph("fig7", 6, fig7, "場所別単複回収率・的中率", 400),
#                wp.dbc_graph("fig8", 6, fig8, "場所別馬券回収率・的中率", 400),
#            ], className="h-50", no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig10", 5, fig10, "馬連的中1", 400),
                wp.dbc_graph("fig20", 7, fig20, "", 400),
            ], className="h-50", no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig11", 5, fig11, "馬連的中2", 400),
                wp.dbc_graph("fig21", 7, fig21, "", 400),
            ], className="h-50", no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig12", 5, fig12, "馬単的中1", 400),
                wp.dbc_graph("fig22", 7, fig22, "", 400),
            ], className="h-50", no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig13", 5, fig13, "馬単的中2", 400),
                wp.dbc_graph("fig23", 7, fig23, "", 400),
            ], className="h-50", no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig14", 5, fig14, "馬単的中3", 400),
                wp.dbc_graph("fig24", 7, fig24, "", 400),
            ], className="h-50", no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig15", 5, fig15, "ワイド的中1", 400),
                wp.dbc_graph("fig25", 7, fig25, "", 400),
            ], className="h-50", no_gutters=True),
    ])
Beispiel #8
0
def race_trend():
    race_df = GetData.get_race_data_real().query("データ区分 == '7'")
    raceuma_df = GetData.get_raceuma_data_real().query("データ区分 == '7'")

    raceuma_df.loc[:, "競走馬コード"] = raceuma_df.apply(lambda x : str(x["競走コード"]) + str(x["馬番"]).zfill(2), axis=1)
    bet_df = GetData.get_bet_data_real()
    haraimodoshi_dict = GetData.get_haraimodoshi_dict_real()
    if len(race_df.index) == 0 or len(raceuma_df.index) == 0:
        return html.P("no data")

    # 得点1位着順
    fig1 = wp.cp_pie_chart_score_1(raceuma_df)

    # 単勝回収率
    fig2_df = raceuma_df[raceuma_df["馬券評価順位"] == 1].copy()
    fig2_value = fig2_df["単勝配当"].mean()
    fig2_reference = 0
    fig2 = gp.add_steps_threshold_anda_delta(fig2_value, fig2_reference)

    # 複勝回収率
    fig3_df = raceuma_df[raceuma_df["馬券評価順位"] == 1].copy()
    fig3_value = fig3_df["複勝配当"].mean()
    fig3_reference = 0
    fig3 = gp.add_steps_threshold_anda_delta(fig3_value, fig3_reference)

    # 1番人気
    fig4 = wp.cp_pie_chart_ninki_1(raceuma_df)

    # 単勝回収率
    fig5_df = raceuma_df[raceuma_df["単勝人気"] == 1].copy()
    fig5_value = fig5_df["単勝配当"].mean()
    fig5_reference = 0
    fig5 = gp.add_steps_threshold_anda_delta(fig5_value, fig5_reference)

    # 複勝回収率
    fig6_df = raceuma_df[raceuma_df["単勝人気"] == 1].copy()
    fig6_value = fig6_df["複勝配当"].mean()
    fig6_reference = 0
    fig6 = gp.add_steps_threshold_anda_delta(fig6_value, fig6_reference)

    # 場所別単複回収率・的中率
    fig7 = wp.cp_multiple_line_and_bar_chart_place_tanpuku_return(race_df, raceuma_df)

    if len(bet_df.index) != 0:
        # 場所別馬券回収率・的中率
        fig8 = wp.cp_multiple_line_and_bar_chart_place_bet_return(bet_df)
        # 券種別結果
        summary_bet_df = cd.get_summary_bet_df(bet_df)
        fig9 = wp.cp_simple_waterfall_chart_balance_change(summary_bet_df)
    else:
        fig8 = ""
        fig9 = ""

    # 単勝配当分布
    #fig10 = wp.cp_pie_chart_tansho_dist(haraimodoshi_dict)
    # 複勝配当分布
    #fig11 = wp.cp_pie_chart_fukusho_dist(haraimodoshi_dict)
    # 馬連配当分布
    #fig12 = wp.cp_pie_chart_umaren_dist(haraimodoshi_dict)
    # 馬単配当分布
    #fig13 = wp.cp_pie_chart_umatan_dist(haraimodoshi_dict)
    # ワイド配当分布
    #fig14 = wp.cp_pie_chart_wide_dist(haraimodoshi_dict)
    # 三連複配当分布
    #fig15 = wp.cp_pie_chart_sanrenpuku_dist(haraimodoshi_dict)
    # 馬連的中1
    fig20 = wp.cp_stacked_funnel_plot_umaren_1(race_df, raceuma_df, haraimodoshi_dict)
    # 馬連的中2
    fig21 = wp.cp_stacked_funnel_plot_umaren_2(race_df, raceuma_df, haraimodoshi_dict)
    # 馬単的中1
    fig22 = wp.cp_stacked_funnel_plot_umatan_1(race_df, raceuma_df, haraimodoshi_dict)
    # 馬単的中2
    fig23 = wp.cp_stacked_funnel_plot_umatan_2(race_df, raceuma_df, haraimodoshi_dict)
    # 馬単的中3
    fig24 = wp.cp_stacked_funnel_plot_umatan_3(race_df, raceuma_df, haraimodoshi_dict)
    # ワイド的中1
    fig25 = wp.cp_stacked_funnel_plot_wide_1(race_df, raceuma_df, haraimodoshi_dict)

    return dcc.Loading(id="racetrend-loading", children=[
        dbc.Container([
            dbc.Row([
                wp.dbc_top_title("todays race trend")
            ], className="h-30"),
            dbc.Row([
                wp.dbc_graph("fig1", 2, fig1, "得点1位着順", 130),
                wp.dbc_graph("fig2", 2, fig2, "単勝回収率", 130),
                wp.dbc_graph("fig3", 2, fig3, "複勝回収率", 130),
                wp.dbc_graph("fig4", 2, fig4, "1番人気", 130),
                wp.dbc_graph("fig5", 2, fig5, "単勝回収率", 130),
                wp.dbc_graph("fig6", 2, fig6, "複勝回収率", 130),
            ], className="h-20", no_gutters=True),
#            dbc.Row([
#                wp.dbc_graph("fig10", 2, fig10, "単勝配当分布", 200),
#                wp.dbc_graph("fig11", 2, fig11, "複勝配当分布", 200),
#                wp.dbc_graph("fig12", 2, fig12, "馬連配当分布", 200),
#                wp.dbc_graph("fig13", 2, fig13, "馬単配当分布", 200),
#                wp.dbc_graph("fig14", 2, fig14, "ワイド配当分布", 200),
#                wp.dbc_graph("fig15", 2, fig15, "三連複配当分布", 200),
#            ], className="h-20", no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig7", 4, fig7, "場所別単複回収率・的中率", 300),
                wp.dbc_graph("fig8", 4, fig8, "場所別馬券回収率・的中率", 300),
                wp.dbc_graph("fig9", 4, fig9, "券種別結果", 300),
            ], className="h-30", no_gutters=True),
            dbc.Row([
                wp.dbc_graph("fig20", 2, fig20, "馬連的中1", 400),
                wp.dbc_graph("fig21", 2, fig21, "馬連的中2", 400),
                wp.dbc_graph("fig22", 2, fig22, "馬単的中1", 400),
                wp.dbc_graph("fig23", 2, fig23, "馬単的中2", 400),
                wp.dbc_graph("fig24", 2, fig24, "馬単的中3", 400),
                wp.dbc_graph("fig25", 2, fig25, "ワイド的中1", 400),
            ], className="h-30", no_gutters=True),
        ],
        style={"height": "90vh"},
        fluid=True
    )])