def derive_primitives(myd, varnames): """ derive desired primitive variables from conserved state """ # get the variables we need dens = myd.get_var("density") xmom = myd.get_var("x-momentum") ymom = myd.get_var("y-momentum") ener = myd.get_var("energy") derived_vars = [] u = xmom / dens v = ymom / dens e = (ener - 0.5 * dens * (u * u + v * v)) / dens gamma = myd.get_aux("gamma") p = eos.pres(gamma, dens, e) if isinstance(varnames, str): wanted = [varnames] else: wanted = list(varnames) for var in wanted: if var == "velocity": derived_vars.append(u) derived_vars.append(v) elif var in ["e", "eint"]: derived_vars.append(e) elif var in ["p", "pressure"]: derived_vars.append(p) elif var in ["rhoe", "rhoenergy"]: derived_vars.append(dens * ener) elif var == "primitive": derived_vars.append(dens) derived_vars.append(u) derived_vars.append(v) derived_vars.append(p) derived_vars.append(dens * ener) elif var == "soundspeed": derived_vars.append(np.sqrt(gamma * p / dens)) if len(derived_vars) > 1: return derived_vars else: return derived_vars[0]
def test_eos_consistency(): dens = 1.0 eint = 1.0 gamma = 1.4 p = eos.pres(gamma, dens, eint) dens_eos = eos.dens(gamma, p, eint) assert dens == dens_eos rhoe_eos = eos.rhoe(gamma, p) assert dens*eint == rhoe_eos
def test_eos_consistency(): dens = 1.0 eint = 1.0 gamma = 1.4 p = eos.pres(gamma, dens, eint) dens_eos = eos.dens(gamma, p, eint) assert_equal(dens, dens_eos) rhoe_eos = eos.rhoe(gamma, p) assert_equal(dens * eint, rhoe_eos)
def cons_to_prim(U, gamma, ivars, myg): """ convert an input vector of conserved variables to primitive variables """ q = myg.scratch_array(nvar=ivars.nq) q[:, :, ivars.irho] = U[:, :, ivars.idens] q[:, :, ivars.iu] = U[:, :, ivars.ixmom] / U[:, :, ivars.idens] q[:, :, ivars.iv] = U[:, :, ivars.iymom] / U[:, :, ivars.idens] e = (U[:, :, ivars.iener] - 0.5 * q[:, :, ivars.irho] * (q[:, :, ivars.iu]**2 + q[:, :, ivars.iv]**2)) / q[:, :, ivars.irho] q[:, :, ivars.ip] = eos.pres(gamma, q[:, :, ivars.irho], e) if ivars.naux > 0: q[:,:,ivars.ix:ivars.ix+ivars.naux] = \ U[:,:,ivars.irhox:ivars+naux]/q[:,:,ivars.irho] return q
def cons_to_prim(U, gamma, ivars, myg): """ convert an input vector of conserved variables to primitive variables """ q = myg.scratch_array(nvar=ivars.nq) q[:, :, ivars.irho] = U[:, :, ivars.idens] q[:, :, ivars.iu] = U[:, :, ivars.ixmom]/U[:, :, ivars.idens] q[:, :, ivars.iv] = U[:, :, ivars.iymom]/U[:, :, ivars.idens] e = (U[:, :, ivars.iener] - 0.5*q[:, :, ivars.irho]*(q[:, :, ivars.iu]**2 + q[:, :, ivars.iv]**2))/q[:, :, ivars.irho] q[:, :, ivars.ip] = eos.pres(gamma, q[:, :, ivars.irho], e) if ivars.naux > 0: for nq, nu in zip(range(ivars.ix, ivars.ix+ivars.naux), range(ivars.irhox, ivars.irhox+ivars.naux)): q[:, :, nq] = U[:, :, nu]/q[:, :, ivars.irho] return q
def timestep(self): """ The timestep function computes the advective timestep (CFL) constraint. The CFL constraint says that information cannot propagate further than one zone per timestep. We use the driver.cfl parameter to control what fraction of the CFL step we actually take. """ cfl = self.rp.get_param("driver.cfl") # get the variables we need dens = self.cc_data.get_var("density") xmom = self.cc_data.get_var("x-momentum") ymom = self.cc_data.get_var("y-momentum") ener = self.cc_data.get_var("energy") # we need to compute the pressure u = xmom/dens v = ymom/dens e = (ener - 0.5*dens*(u*u + v*v))/dens gamma = self.rp.get_param("eos.gamma") p = eos.pres(gamma, dens, e) # compute the sounds speed cs = np.sqrt(gamma*p/dens) # the timestep is min(dx/(|u| + cs), dy/(|v| + cs)) xtmp = self.cc_data.grid.dx/(abs(u) + cs) ytmp = self.cc_data.grid.dy/(abs(v) + cs) dt = cfl*min(xtmp.min(), ytmp.min()) return dt
def cons_to_prim(U, gamma, ivars, myg): """ convert an input vector of conserved variables to primitive variables """ q = myg.scratch_array(nvar=ivars.nq) q[:, :, ivars.irho] = U[:, :, ivars.idens] q[:, :, ivars.iu] = U[:, :, ivars.ixmom] / U[:, :, ivars.idens] q[:, :, ivars.iv] = U[:, :, ivars.iymom] / U[:, :, ivars.idens] #q[:,:,ivars.iv] = 0.0*q[:,:,ivars.iv] ## here iener will be in j/kg and it is rho*E e = (U[:, :, ivars.iener] - 0.5 * q[:, :, ivars.irho] * (q[:, :, ivars.iu]**2 + q[:, :, ivars.iv]**2) ) / q[:, :, ivars.irho] #why do we need rho here ? #keyboard() #q[:,:,ivars.iener] = e q[:, :, ivars.ip] = eos.pres(q[:, :, ivars.irho], e) if ivars.naux > 0: q[:,:,ivars.ix:ivars.ix+ivars.naux] = \ U[:,:,ivars.irhox:ivars+naux]/q[:,:,ivars.irho] return q
def compute_timestep(self): """ The timestep function computes the advective timestep (CFL) constraint. The CFL constraint says that information cannot propagate further than one zone per timestep. We use the driver.cfl parameter to control what fraction of the CFL step we actually take. """ cfl = self.rp.get_param("driver.cfl") # get the variables we need dens = self.cc_data.get_var("density") xmom = self.cc_data.get_var("x-momentum") ymom = self.cc_data.get_var("y-momentum") ener = self.cc_data.get_var("energy") # we need to compute the pressure u = xmom/dens v = ymom/dens e = (ener - 0.5*dens*(u*u + v*v))/dens gamma = self.rp.get_param("eos.gamma") p = eos.pres(gamma, dens, e) # compute the sounds speed cs = np.sqrt(gamma*p/dens) # the timestep is min(dx/(|u| + cs), dy/(|v| + cs)) xtmp = self.cc_data.grid.dx/(abs(u) + cs) ytmp = self.cc_data.grid.dy/(abs(v) + cs) self.dt = cfl*min(xtmp.min(), ytmp.min())
def dovis(self): """ Do runtime visualization. """ plt.clf() plt.rc("font", size=10) dens = self.cc_data.get_var("density") xmom = self.cc_data.get_var("x-momentum") ymom = self.cc_data.get_var("y-momentum") ener = self.cc_data.get_var("energy") # get the velocities u = xmom/dens v = ymom/dens # get the pressure magvel = u**2 + v**2 # temporarily |U|^2 rhoe = (ener - 0.5*dens*magvel) magvel = np.sqrt(magvel) e = rhoe/dens # access gamma from the cc_data object so we can use dovis # outside of a running simulation. gamma = self.cc_data.get_aux("gamma") p = eos.pres(gamma, dens, e) myg = self.cc_data.grid # figure out the geometry L_x = self.cc_data.grid.xmax - self.cc_data.grid.xmin L_y = self.cc_data.grid.ymax - self.cc_data.grid.ymin orientation = "vertical" shrink = 1.0 sparseX = 0 allYlabel = 1 if L_x > 2*L_y: # we want 4 rows: # rho # |U| # p # e fig, axes = plt.subplots(nrows=4, ncols=1, num=1) orientation = "horizontal" if (L_x > 4*L_y): shrink = 0.75 onLeft = list(range(self.vars.nvar)) elif L_y > 2*L_x: # we want 4 columns: rho |U| p e fig, axes = plt.subplots(nrows=1, ncols=4, num=1) if (L_y >= 3*L_x): shrink = 0.5 sparseX = 1 allYlabel = 0 onLeft = [0] else: # 2x2 grid of plots with # # rho |u| # p e fig, axes = plt.subplots(nrows=2, ncols=2, num=1) plt.subplots_adjust(hspace=0.25) onLeft = [0,2] fields = [dens, magvel, p, e] field_names = [r"$\rho$", r"U", "p", "e"] for n in range(4): ax = axes.flat[n] v = fields[n] img = ax.imshow(np.transpose(v.v()), interpolation="nearest", origin="lower", extent=[myg.xmin, myg.xmax, myg.ymin, myg.ymax]) ax.set_xlabel("x") if n == 0: ax.set_ylabel("y") elif allYlabel: ax.set_ylabel("y") ax.set_title(field_names[n]) if not n in onLeft: ax.yaxis.offsetText.set_visible(False) if n > 0: ax.get_yaxis().set_visible(False) if sparseX: ax.xaxis.set_major_locator(plt.MaxNLocator(3)) plt.colorbar(img, ax=ax, orientation=orientation, shrink=shrink) plt.figtext(0.05,0.0125, "t = %10.5f" % self.cc_data.t) plt.draw()
def dovis(self): """ Do runtime visualization. """ plt.clf() plt.rc("font", size=10) dens = self.cc_data.get_var("density") xmom = self.cc_data.get_var("x-momentum") ymom = self.cc_data.get_var("y-momentum") ener = self.cc_data.get_var("energy") nvar = len(self.cc_data.vars) # get the velocities u = xmom / dens v = ymom / dens # get the pressure magvel = u**2 + v**2 # temporarily |U|^2 rhoe = (ener - 0.5 * dens * magvel) magvel = np.sqrt(magvel) e = rhoe / dens # access gamma from the cc_data object so we can use dovis # outside of a running simulation. gamma = self.cc_data.get_aux("gamma") p = eos.pres(gamma, dens, e) myg = self.cc_data.grid # figure out the geometry L_x = self.cc_data.grid.xmax - self.cc_data.grid.xmin L_y = self.cc_data.grid.ymax - self.cc_data.grid.ymin orientation = "vertical" shrink = 1.0 sparseX = 0 allYlabel = 1 if L_x > 2 * L_y: # we want 4 rows: # rho # |U| # p # e fig, axes = plt.subplots(nrows=4, ncols=1, num=1) orientation = "horizontal" if L_x > 4 * L_y: shrink = 0.75 on_left = list(range(nvar)) elif L_y > 2 * L_x: # we want 4 columns: rho |U| p e fig, axes = plt.subplots(nrows=1, ncols=4, num=1) if L_y >= 3 * L_x: shrink = 0.5 sparseX = 1 allYlabel = 0 on_left = [0] else: # 2x2 grid of plots with # # rho |u| # p e fig, axes = plt.subplots(nrows=2, ncols=2, num=1) plt.subplots_adjust(hspace=0.25) on_left = [0, 2] fields = [dens, magvel, p, e] field_names = [r"$\rho$", r"U", "p", "e"] cm = "viridis" for n in range(4): ax = axes.flat[n] v = fields[n] img = ax.imshow(np.transpose(v.v()), interpolation="nearest", origin="lower", extent=[myg.xmin, myg.xmax, myg.ymin, myg.ymax], cmap=cm) ax.set_xlabel("x") if n == 0: ax.set_ylabel("y") elif allYlabel: ax.set_ylabel("y") ax.set_title(field_names[n]) if not n in on_left: ax.yaxis.offsetText.set_visible(False) if n > 0: ax.get_yaxis().set_visible(False) if sparseX: ax.xaxis.set_major_locator(plt.MaxNLocator(3)) plt.colorbar(img, ax=ax, orientation=orientation, shrink=shrink) plt.figtext(0.05, 0.0125, "t = %10.5f" % self.cc_data.t) plt.pause(0.001) plt.draw()
def user(bc_name, bc_edge, variable, my_data): """ A hydrostatic boundary. This integrates the equation of HSE into the ghost cells to get the pressure and density under the assumption that the specific internal energy is constant. Upon exit, the ghost cells for the input variable will be set Parameters ---------- bc_name : {'hse'} The descriptive name for the boundary condition -- this allows for pyro to have multiple types of user-supplied boundary conditions. For this module, it needs to be 'hse'. bc_edge : {'ylb', 'yrb'} The boundary to update: ylb = lower y boundary; yrb = upper y boundary. variable : {'density', 'x-momentum', 'y-momentum', 'energy'} The variable whose ghost cells we are filling my_data : CellCenterData2d object The data object """ dens = my_data.get_var("density") xmom = my_data.get_var("x-momentum") ymom = my_data.get_var("y-momentum") ener = my_data.get_var("energy") grav = my_data.get_aux("grav") gamma = my_data.get_aux("gamma") myg = my_data.grid if bc_name == "hse": if bc_edge == "ylb": # lower y boundary # we will take the density to be constant, the velocity to # be outflow, and the pressure to be in HSE if variable == "density": j = myg.jlo - 1 while j >= 0: dens[:, j] = dens[:, myg.jlo] j -= 1 elif variable == "x-momentum": j = myg.jlo - 1 while j >= 0: xmom[:, j] = xmom[:, myg.jlo] j -= 1 elif variable == "y-momentum": j = myg.jlo - 1 while j >= 0: ymom[:, j] = ymom[:, myg.jlo] j -= 1 elif variable == "energy": dens_base = dens[:, myg.jlo] ke_base = 0.5 * (xmom[:, myg.jlo] ** 2 + ymom[:, myg.jlo] ** 2) / dens[:, myg.jlo] eint_base = (ener[:, myg.jlo] - ke_base) / dens[:, myg.jlo] pres_base = eos.pres(gamma, dens_base, eint_base) # we are assuming that the density is constant in this # formulation of HSE, so the pressure comes simply from # differencing the HSE equation j = myg.jlo - 1 while j >= 0: pres_below = pres_base - grav * dens_base * myg.dy rhoe = eos.rhoe(gamma, pres_below) ener[:, j] = rhoe + ke_base pres_base = pres_below.copy() j -= 1 else: msg.fail("error: variable not defined") elif bc_edge == "yrb": # upper y boundary # we will take the density to be constant, the velocity to # be outflow, and the pressure to be in HSE if variable == "density": j = myg.jhi + 1 while j <= myg.jhi + myg.ng: dens[:, j] = dens[:, myg.jhi] j += 1 elif variable == "x-momentum": j = myg.jhi + 1 while j <= myg.jhi + myg.ng: xmom[:, j] = xmom[:, myg.jhi] j += 1 elif variable == "y-momentum": j = myg.jhi + 1 while j <= myg.jhi + myg.ng: ymom[:, j] = ymom[:, myg.jhi] j += 1 elif variable == "energy": dens_base = dens[:, myg.jhi] ke_base = 0.5 * (xmom[:, myg.jhi] ** 2 + ymom[:, myg.jhi] ** 2) / dens[:, myg.jhi] eint_base = (ener[:, myg.jhi] - ke_base) / dens[:, myg.jhi] pres_base = eos.pres(gamma, dens_base, eint_base) # we are assuming that the density is constant in this # formulation of HSE, so the pressure comes simply from # differencing the HSE equation j = myg.jhi + 1 while j <= myg.jhi + myg.ng: pres_above = pres_base + grav * dens_base * myg.dy rhoe = eos.rhoe(gamma, pres_above) ener[:, j] = rhoe + ke_base pres_base = pres_above.copy() j += 1 else: msg.fail("error: variable not defined") else: msg.fail("error: hse BC not supported for xlb or xrb") else: msg.fail("error: bc type %s not supported" % (bc_name))
def user(bc_name, bc_edge, variable, ccdata): """ A hydrostatic boundary. This integrates the equation of HSE into the ghost cells to get the pressure and density under the assumption that the specific internal energy is constant. Upon exit, the ghost cells for the input variable will be set Parameters ---------- bc_name : {'hse'} The descriptive name for the boundary condition -- this allows for pyro to have multiple types of user-supplied boundary conditions. For this module, it needs to be 'hse'. bc_edge : {'ylb', 'yrb'} The boundary to update: ylb = lower y boundary; yrb = upper y boundary. variable : {'density', 'x-momentum', 'y-momentum', 'energy'} The variable whose ghost cells we are filling ccdata : CellCenterData2d object The data object """ myg = ccdata.grid if bc_name == "hse": if bc_edge == "ylb": # lower y boundary # we will take the density to be constant, the velocity to # be outflow, and the pressure to be in HSE if variable in ["density", "x-momentum", "y-momentum", "ymom_src", "E_src", "fuel", "ash"]: v = ccdata.get_var(variable) j = myg.jlo-1 while j >= 0: v[:, j] = v[:, myg.jlo] j -= 1 elif variable == "energy": dens = ccdata.get_var("density") xmom = ccdata.get_var("x-momentum") ymom = ccdata.get_var("y-momentum") ener = ccdata.get_var("energy") grav = ccdata.get_aux("grav") gamma = ccdata.get_aux("gamma") dens_base = dens[:, myg.jlo] ke_base = 0.5*(xmom[:, myg.jlo]**2 + ymom[:, myg.jlo]**2) / \ dens[:, myg.jlo] eint_base = (ener[:, myg.jlo] - ke_base)/dens[:, myg.jlo] pres_base = eos.pres(gamma, dens_base, eint_base) # we are assuming that the density is constant in this # formulation of HSE, so the pressure comes simply from # differencing the HSE equation j = myg.jlo-1 while j >= 0: pres_below = pres_base - grav*dens_base*myg.dy rhoe = eos.rhoe(gamma, pres_below) ener[:, j] = rhoe + ke_base pres_base = pres_below.copy() j -= 1 else: raise NotImplementedError("variable not defined") elif bc_edge == "yrb": # upper y boundary # we will take the density to be constant, the velocity to # be outflow, and the pressure to be in HSE if variable in ["density", "x-momentum", "y-momentum", "ymom_src", "E_src", "fuel", "ash"]: v = ccdata.get_var(variable) for j in range(myg.jhi+1, myg.jhi+myg.ng+1): v[:, j] = v[:, myg.jhi] elif variable == "energy": dens = ccdata.get_var("density") xmom = ccdata.get_var("x-momentum") ymom = ccdata.get_var("y-momentum") ener = ccdata.get_var("energy") grav = ccdata.get_aux("grav") gamma = ccdata.get_aux("gamma") dens_base = dens[:, myg.jhi] ke_base = 0.5*(xmom[:, myg.jhi]**2 + ymom[:, myg.jhi]**2) / \ dens[:, myg.jhi] eint_base = (ener[:, myg.jhi] - ke_base)/dens[:, myg.jhi] pres_base = eos.pres(gamma, dens_base, eint_base) # we are assuming that the density is constant in this # formulation of HSE, so the pressure comes simply from # differencing the HSE equation for j in range(myg.jhi+1, myg.jhi+myg.ng+1): pres_above = pres_base + grav*dens_base*myg.dy rhoe = eos.rhoe(gamma, pres_above) ener[:, j] = rhoe + ke_base pres_base = pres_above.copy() else: raise NotImplementedError("variable not defined") else: msg.fail("error: hse BC not supported for xlb or xrb") elif bc_name == "ramp": # Boundary conditions for double Mach reflection problem gamma = ccdata.get_aux("gamma") if bc_edge == "xlb": # lower x boundary # inflow condition with post shock setup v = ccdata.get_var(variable) i = myg.ilo - 1 if variable in ["density", "x-momentum", "y-momentum", "energy"]: val = inflow_post_bc(variable, gamma) while i >= 0: v[i, :] = val i = i - 1 else: v[:, :] = 0.0 # no source term elif bc_edge == "ylb": # lower y boundary # for x > 1./6., reflective boundary # for x < 1./6., inflow with post shock setup if variable in ["density", "x-momentum", "y-momentum", "energy"]: v = ccdata.get_var(variable) j = myg.jlo - 1 jj = 0 while j >= 0: xcen_l = myg.x < 1.0/6.0 xcen_r = myg.x >= 1.0/6.0 v[xcen_l, j] = inflow_post_bc(variable, gamma) if variable == "y-momentum": v[xcen_r, j] = -1.0*v[xcen_r, myg.jlo+jj] else: v[xcen_r, j] = v[xcen_r, myg.jlo+jj] j = j - 1 jj = jj + 1 else: v = ccdata.get_var(variable) v[:, :] = 0.0 # no source term elif bc_edge == "yrb": # upper y boundary # time-dependent boundary, the shockfront moves with a 10 mach velocity forming an angle # to the x-axis of 30 degrees clockwise. # x coordinate of the grid is used to judge whether the cell belongs to pure post shock area, # the pure pre shock area or the mixed area. if variable in ["density", "x-momentum", "y-momentum", "energy"]: v = ccdata.get_var(variable) for j in range(myg.jhi+1, myg.jhi+myg.ng+1): shockfront_up = 1.0/6.0 + (myg.y[j] + 0.5*myg.dy*math.sqrt(3))/math.tan(math.pi/3.0) \ + (10.0/math.sin(math.pi/3.0))*ccdata.t shockfront_down = 1.0/6.0 + (myg.y[j] - 0.5*myg.dy*math.sqrt(3))/math.tan(math.pi/3.0) \ + (10.0/math.sin(math.pi/3.0))*ccdata.t shockfront = np.array([shockfront_down, shockfront_up]) for i in range(myg.ihi+myg.ng+1): v[i, j] = 0.0 cx_down = myg.x[i] - 0.5*myg.dx*math.sqrt(3) cx_up = myg.x[i] + 0.5*myg.dx*math.sqrt(3) cx = np.array([cx_down, cx_up]) for sf in shockfront: for x in cx: if x < sf: v[i, j] = v[i, j] + 0.25*inflow_post_bc(variable, gamma) else: v[i, j] = v[i, j] + 0.25*inflow_pre_bc(variable, gamma) else: v = ccdata.get_var(variable) v[:, :] = 0.0 # no source term else: msg.fail("error: bc type %s not supported" % (bc_name))
def user(bc_name, bc_edge, variable, ccdata): """ A hydrostatic boundary. This integrates the equation of HSE into the ghost cells to get the pressure and density under the assumption that the specific internal energy is constant. Upon exit, the ghost cells for the input variable will be set Parameters ---------- bc_name : {'hse'} The descriptive name for the boundary condition -- this allows for pyro to have multiple types of user-supplied boundary conditions. For this module, it needs to be 'hse'. bc_edge : {'ylb', 'yrb'} The boundary to update: ylb = lower y boundary; yrb = upper y boundary. variable : {'density', 'x-momentum', 'y-momentum', 'energy'} The variable whose ghost cells we are filling ccdata : CellCenterData2d object The data object """ myg = ccdata.grid if bc_name == "hse": if bc_edge == "ylb": # lower y boundary # we will take the density to be constant, the velocity to # be outflow, and the pressure to be in HSE if variable in [ "density", "x-momentum", "y-momentum", "ymom_src", "E_src", "fuel", "ash" ]: v = ccdata.get_var(variable) j = myg.jlo - 1 while j >= 0: v[:, j] = v[:, myg.jlo] j -= 1 elif variable == "energy": dens = ccdata.get_var("density") xmom = ccdata.get_var("x-momentum") ymom = ccdata.get_var("y-momentum") ener = ccdata.get_var("energy") grav = ccdata.get_aux("grav") gamma = ccdata.get_aux("gamma") dens_base = dens[:, myg.jlo] ke_base = 0.5*(xmom[:, myg.jlo]**2 + ymom[:, myg.jlo]**2) / \ dens[:, myg.jlo] eint_base = (ener[:, myg.jlo] - ke_base) / dens[:, myg.jlo] pres_base = eos.pres(gamma, dens_base, eint_base) # we are assuming that the density is constant in this # formulation of HSE, so the pressure comes simply from # differencing the HSE equation j = myg.jlo - 1 while j >= 0: pres_below = pres_base - grav * dens_base * myg.dy rhoe = eos.rhoe(gamma, pres_below) ener[:, j] = rhoe + ke_base pres_base = pres_below.copy() j -= 1 else: raise NotImplementedError("variable not defined") elif bc_edge == "yrb": # upper y boundary # we will take the density to be constant, the velocity to # be outflow, and the pressure to be in HSE if variable in [ "density", "x-momentum", "y-momentum", "ymom_src", "E_src", "fuel", "ash" ]: v = ccdata.get_var(variable) for j in range(myg.jhi + 1, myg.jhi + myg.ng + 1): v[:, j] = v[:, myg.jhi] elif variable == "energy": dens = ccdata.get_var("density") xmom = ccdata.get_var("x-momentum") ymom = ccdata.get_var("y-momentum") ener = ccdata.get_var("energy") grav = ccdata.get_aux("grav") gamma = ccdata.get_aux("gamma") dens_base = dens[:, myg.jhi] ke_base = 0.5*(xmom[:, myg.jhi]**2 + ymom[:, myg.jhi]**2) / \ dens[:, myg.jhi] eint_base = (ener[:, myg.jhi] - ke_base) / dens[:, myg.jhi] pres_base = eos.pres(gamma, dens_base, eint_base) # we are assuming that the density is constant in this # formulation of HSE, so the pressure comes simply from # differencing the HSE equation for j in range(myg.jhi + 1, myg.jhi + myg.ng + 1): pres_above = pres_base + grav * dens_base * myg.dy rhoe = eos.rhoe(gamma, pres_above) ener[:, j] = rhoe + ke_base pres_base = pres_above.copy() else: raise NotImplementedError("variable not defined") else: msg.fail("error: hse BC not supported for xlb or xrb") elif bc_name == "ramp": # Boundary conditions for double Mach reflection problem gamma = ccdata.get_aux("gamma") if bc_edge == "xlb": # lower x boundary # inflow condition with post shock setup v = ccdata.get_var(variable) i = myg.ilo - 1 if variable in ["density", "x-momentum", "y-momentum", "energy"]: val = inflow_post_bc(variable, gamma) while i >= 0: v[i, :] = val i = i - 1 else: v[:, :] = 0.0 # no source term elif bc_edge == "ylb": # lower y boundary # for x > 1./6., reflective boundary # for x < 1./6., inflow with post shock setup if variable in ["density", "x-momentum", "y-momentum", "energy"]: v = ccdata.get_var(variable) j = myg.jlo - 1 jj = 0 while j >= 0: xcen_l = myg.x < 1.0 / 6.0 xcen_r = myg.x >= 1.0 / 6.0 v[xcen_l, j] = inflow_post_bc(variable, gamma) if variable == "y-momentum": v[xcen_r, j] = -1.0 * v[xcen_r, myg.jlo + jj] else: v[xcen_r, j] = v[xcen_r, myg.jlo + jj] j = j - 1 jj = jj + 1 else: v = ccdata.get_var(variable) v[:, :] = 0.0 # no source term elif bc_edge == "yrb": # upper y boundary # time-dependent boundary, the shockfront moves with a 10 mach velocity forming an angle # to the x-axis of 30 degrees clockwise. # x coordinate of the grid is used to judge whether the cell belongs to pure post shock area, # the pure pre shock area or the mixed area. if variable in ["density", "x-momentum", "y-momentum", "energy"]: v = ccdata.get_var(variable) for j in range(myg.jhi + 1, myg.jhi + myg.ng + 1): shockfront_up = 1.0/6.0 + (myg.y[j] + 0.5*myg.dy*math.sqrt(3))/math.tan(math.pi/3.0) \ + (10.0/math.sin(math.pi/3.0))*ccdata.t shockfront_down = 1.0/6.0 + (myg.y[j] - 0.5*myg.dy*math.sqrt(3))/math.tan(math.pi/3.0) \ + (10.0/math.sin(math.pi/3.0))*ccdata.t shockfront = np.array([shockfront_down, shockfront_up]) for i in range(myg.ihi + myg.ng + 1): v[i, j] = 0.0 cx_down = myg.x[i] - 0.5 * myg.dx * math.sqrt(3) cx_up = myg.x[i] + 0.5 * myg.dx * math.sqrt(3) cx = np.array([cx_down, cx_up]) for sf in shockfront: for x in cx: if x < sf: v[i, j] = v[i, j] + 0.25 * inflow_post_bc( variable, gamma) else: v[i, j] = v[i, j] + 0.25 * inflow_pre_bc( variable, gamma) else: v = ccdata.get_var(variable) v[:, :] = 0.0 # no source term else: msg.fail("error: bc type %s not supported" % (bc_name))
def user(bc_name, bc_edge, variable, my_data): """ A hydrostatic boundary. This integrates the equation of HSE into the ghost cells to get the pressure and density under the assumption that the specific internal energy is constant. Upon exit, the ghost cells for the input variable will be set Parameters ---------- bc_name : {'hse'} The descriptive name for the boundary condition -- this allows for pyro to have multiple types of user-supplied boundary conditions. For this module, it needs to be 'hse'. bc_edge : {'ylb', 'yrb'} The boundary to update: ylb = lower y boundary; yrb = upper y boundary. variable : {'density', 'x-momentum', 'y-momentum', 'energy'} The variable whose ghost cells we are filling my_data : CellCenterData2d object The data object """ dens = my_data.get_var("density") xmom = my_data.get_var("x-momentum") ymom = my_data.get_var("y-momentum") ener = my_data.get_var("energy") grav = my_data.get_aux("grav") gamma = my_data.get_aux("gamma") myg = my_data.grid if bc_name == "hse": if bc_edge == "ylb": # lower y boundary # we will take the density to be constant, the velocity to # be outflow, and the pressure to be in HSE if variable == "density": j = myg.jlo - 1 while j >= 0: dens.d[:, j] = dens.d[:, myg.jlo] j -= 1 elif variable == "x-momentum": j = myg.jlo - 1 while j >= 0: xmom.d[:, j] = xmom.d[:, myg.jlo] j -= 1 elif variable == "y-momentum": j = myg.jlo - 1 while j >= 0: ymom.d[:, j] = ymom.d[:, myg.jlo] j -= 1 elif variable == "energy": dens_base = dens.d[:, myg.jlo] ke_base = 0.5*(xmom.d[:,myg.jlo]**2 + ymom.d[:,myg.jlo]**2) / \ dens.d[:,myg.jlo] eint_base = (ener.d[:, myg.jlo] - ke_base) / dens.d[:, myg.jlo] pres_base = eos.pres(gamma, dens_base, eint_base) # we are assuming that the density is constant in this # formulation of HSE, so the pressure comes simply from # differencing the HSE equation j = myg.jlo - 1 while (j >= 0): pres_below = pres_base - grav * dens_base * myg.dy rhoe = eos.rhoe(gamma, pres_below) ener.d[:, j] = rhoe + ke_base pres_base = pres_below.copy() j -= 1 else: msg.fail("error: variable not defined") elif bc_edge == "yrb": # upper y boundary # we will take the density to be constant, the velocity to # be outflow, and the pressure to be in HSE if variable == "density": for j in range(myg.jhi + 1, myg.jhi + myg.ng + 1): dens.d[:, j] = dens.d[:, myg.jhi] elif variable == "x-momentum": for j in range(myg.jhi + 1, myg.jhi + myg.ng + 1): xmom.d[:, j] = xmom.d[:, myg.jhi] elif variable == "y-momentum": for j in range(myg.jhi + 1, myg.jhi + myg.ng + 1): ymom.d[:, j] = ymom.d[:, myg.jhi] elif variable == "energy": dens_base = dens.d[:, myg.jhi] ke_base = 0.5*(xmom.d[:,myg.jhi]**2 + ymom.d[:,myg.jhi]**2) / \ dens.d[:,myg.jhi] eint_base = (ener.d[:, myg.jhi] - ke_base) / dens.d[:, myg.jhi] pres_base = eos.pres(gamma, dens_base, eint_base) # we are assuming that the density is constant in this # formulation of HSE, so the pressure comes simply from # differencing the HSE equation for j in range(myg.jhi + 1, myg.jhi + myg.ng + 1): pres_above = pres_base + grav * dens_base * myg.dy rhoe = eos.rhoe(gamma, pres_above) ener.d[:, j] = rhoe + ke_base pres_base = pres_above.copy() else: msg.fail("error: variable not defined") else: msg.fail("error: hse BC not supported for xlb or xrb") else: msg.fail("error: bc type %s not supported" % (bc_name))
def unsplitFluxes(my_data, my_aux, rp, vars, solid, tc, dt): """ unsplitFluxes returns the fluxes through the x and y interfaces by doing an unsplit reconstruction of the interface values and then solving the Riemann problem through all the interfaces at once currently we assume a gamma-law EOS The runtime parameter grav is assumed to be the gravitational acceleration in the y-direction Parameters ---------- my_data : CellCenterData2d object The data object containing the grid and advective scalar that we are advecting. rp : RuntimeParameters object The runtime parameters for the simulation vars : Variables object The Variables object that tells us which indices refer to which variables tc : TimerCollection object The timers we are using to profile dt : float The timestep we are advancing through. Returns ------- out : ndarray, ndarray The fluxes on the x- and y-interfaces """ tm_flux = tc.timer("unsplitFluxes") tm_flux.begin() myg = my_data.grid gamma = rp.get_param("eos.gamma") #========================================================================= # compute the primitive variables #========================================================================= # Q = (rho, u, v, p) dens = my_data.get_var("density") xmom = my_data.get_var("x-momentum") ymom = my_data.get_var("y-momentum") ener = my_data.get_var("energy") r = dens # get the velocities u = xmom/dens v = ymom/dens # get the pressure e = (ener - 0.5*(xmom**2 + ymom**2)/dens)/dens p = eos.pres(gamma, dens, e) smallp = 1.e-10 p.d = p.d.clip(smallp) # apply a floor to the pressure #========================================================================= # compute the flattening coefficients #========================================================================= # there is a single flattening coefficient (xi) for all directions use_flattening = rp.get_param("compressible.use_flattening") if use_flattening: delta = rp.get_param("compressible.delta") z0 = rp.get_param("compressible.z0") z1 = rp.get_param("compressible.z1") xi_x = reconstruction_f.flatten(1, p.d, u.d, myg.qx, myg.qy, myg.ng, smallp, delta, z0, z1) xi_y = reconstruction_f.flatten(2, p.d, v.d, myg.qx, myg.qy, myg.ng, smallp, delta, z0, z1) xi = reconstruction_f.flatten_multid(xi_x, xi_y, p.d, myg.qx, myg.qy, myg.ng) else: xi = 1.0 # monotonized central differences in x-direction tm_limit = tc.timer("limiting") tm_limit.begin() limiter = rp.get_param("compressible.limiter") if limiter == 0: limitFunc = reconstruction_f.nolimit elif limiter == 1: limitFunc = reconstruction_f.limit2 else: limitFunc = reconstruction_f.limit4 ldelta_rx = xi*limitFunc(1, r.d, myg.qx, myg.qy, myg.ng) ldelta_ux = xi*limitFunc(1, u.d, myg.qx, myg.qy, myg.ng) ldelta_vx = xi*limitFunc(1, v.d, myg.qx, myg.qy, myg.ng) ldelta_px = xi*limitFunc(1, p.d, myg.qx, myg.qy, myg.ng) # monotonized central differences in y-direction ldelta_ry = xi*limitFunc(2, r.d, myg.qx, myg.qy, myg.ng) ldelta_uy = xi*limitFunc(2, u.d, myg.qx, myg.qy, myg.ng) ldelta_vy = xi*limitFunc(2, v.d, myg.qx, myg.qy, myg.ng) ldelta_py = xi*limitFunc(2, p.d, myg.qx, myg.qy, myg.ng) tm_limit.end() #========================================================================= # x-direction #========================================================================= # left and right primitive variable states tm_states = tc.timer("interfaceStates") tm_states.begin() V_l, V_r = interface_f.states(1, myg.qx, myg.qy, myg.ng, myg.dx, dt, vars.nvar, gamma, r.d, u.d, v.d, p.d, ldelta_rx, ldelta_ux, ldelta_vx, ldelta_px) tm_states.end() # transform interface states back into conserved variables U_xl = myg.scratch_array(vars.nvar) U_xr = myg.scratch_array(vars.nvar) U_xl.d[:,:,vars.idens] = V_l[:,:,vars.irho] U_xl.d[:,:,vars.ixmom] = V_l[:,:,vars.irho]*V_l[:,:,vars.iu] U_xl.d[:,:,vars.iymom] = V_l[:,:,vars.irho]*V_l[:,:,vars.iv] U_xl.d[:,:,vars.iener] = eos.rhoe(gamma, V_l[:,:,vars.ip]) + \ 0.5*V_l[:,:,vars.irho]*(V_l[:,:,vars.iu]**2 + V_l[:,:,vars.iv]**2) U_xr.d[:,:,vars.idens] = V_r[:,:,vars.irho] U_xr.d[:,:,vars.ixmom] = V_r[:,:,vars.irho]*V_r[:,:,vars.iu] U_xr.d[:,:,vars.iymom] = V_r[:,:,vars.irho]*V_r[:,:,vars.iv] U_xr.d[:,:,vars.iener] = eos.rhoe(gamma, V_r[:,:,vars.ip]) + \ 0.5*V_r[:,:,vars.irho]*(V_r[:,:,vars.iu]**2 + V_r[:,:,vars.iv]**2) #========================================================================= # y-direction #========================================================================= # left and right primitive variable states tm_states.begin() V_l, V_r = interface_f.states(2, myg.qx, myg.qy, myg.ng, myg.dy, dt, vars.nvar, gamma, r.d, u.d, v.d, p.d, ldelta_ry, ldelta_uy, ldelta_vy, ldelta_py) tm_states.end() # transform interface states back into conserved variables U_yl = myg.scratch_array(vars.nvar) U_yr = myg.scratch_array(vars.nvar) U_yl.d[:,:,vars.idens] = V_l[:,:,vars.irho] U_yl.d[:,:,vars.ixmom] = V_l[:,:,vars.irho]*V_l[:,:,vars.iu] U_yl.d[:,:,vars.iymom] = V_l[:,:,vars.irho]*V_l[:,:,vars.iv] U_yl.d[:,:,vars.iener] = eos.rhoe(gamma, V_l[:,:,vars.ip]) + \ 0.5*V_l[:,:,vars.irho]*(V_l[:,:,vars.iu]**2 + V_l[:,:,vars.iv]**2) U_yr.d[:,:,vars.idens] = V_r[:,:,vars.irho] U_yr.d[:,:,vars.ixmom] = V_r[:,:,vars.irho]*V_r[:,:,vars.iu] U_yr.d[:,:,vars.iymom] = V_r[:,:,vars.irho]*V_r[:,:,vars.iv] U_yr.d[:,:,vars.iener] = eos.rhoe(gamma, V_r[:,:,vars.ip]) + \ 0.5*V_r[:,:,vars.irho]*(V_r[:,:,vars.iu]**2 + V_r[:,:,vars.iv]**2) #========================================================================= # apply source terms #========================================================================= grav = rp.get_param("compressible.grav") ymom_src = my_aux.get_var("ymom_src") ymom_src.v()[:,:] = dens.v()*grav my_aux.fill_BC("ymom_src") E_src = my_aux.get_var("E_src") E_src.v()[:,:] = ymom.v()*grav my_aux.fill_BC("E_src") # ymom_xl[i,j] += 0.5*dt*dens[i-1,j]*grav U_xl.v(buf=1, n=vars.iymom)[:,:] += 0.5*dt*ymom_src.ip(-1, buf=1) U_xl.v(buf=1, n=vars.iener)[:,:] += 0.5*dt*E_src.ip(-1, buf=1) # ymom_xr[i,j] += 0.5*dt*dens[i,j]*grav U_xr.v(buf=1, n=vars.iymom)[:,:] += 0.5*dt*ymom_src.v(buf=1) U_xr.v(buf=1, n=vars.iener)[:,:] += 0.5*dt*E_src.v(buf=1) # ymom_yl[i,j] += 0.5*dt*dens[i,j-1]*grav U_yl.v(buf=1, n=vars.iymom)[:,:] += 0.5*dt*ymom_src.jp(-1, buf=1) U_yl.v(buf=1, n=vars.iener)[:,:] += 0.5*dt*E_src.jp(-1, buf=1) # ymom_yr[i,j] += 0.5*dt*dens[i,j]*grav U_yr.v(buf=1, n=vars.iymom)[:,:] += 0.5*dt*ymom_src.v(buf=1) U_yr.v(buf=1, n=vars.iener)[:,:] += 0.5*dt*E_src.v(buf=1) #========================================================================= # compute transverse fluxes #========================================================================= tm_riem = tc.timer("riemann") tm_riem.begin() riemann = rp.get_param("compressible.riemann") if riemann == "HLLC": riemannFunc = interface_f.riemann_hllc elif riemann == "CGF": riemannFunc = interface_f.riemann_cgf else: msg.fail("ERROR: Riemann solver undefined") _fx = riemannFunc(1, myg.qx, myg.qy, myg.ng, vars.nvar, vars.idens, vars.ixmom, vars.iymom, vars.iener, solid.xl, solid.xr, gamma, U_xl.d, U_xr.d) _fy = riemannFunc(2, myg.qx, myg.qy, myg.ng, vars.nvar, vars.idens, vars.ixmom, vars.iymom, vars.iener, solid.yl, solid.yr, gamma, U_yl.d, U_yr.d) F_x = patch.ArrayIndexer(d=_fx, grid=myg) F_y = patch.ArrayIndexer(d=_fy, grid=myg) tm_riem.end() #========================================================================= # construct the interface values of U now #========================================================================= """ finally, we can construct the state perpendicular to the interface by adding the central difference part to the trasverse flux difference. The states that we represent by indices i,j are shown below (1,2,3,4): j+3/2--+----------+----------+----------+ | | | | | | | | j+1 -+ | | | | | | | | | | | 1: U_xl[i,j,:] = U j+1/2--+----------XXXXXXXXXXXX----------+ i-1/2,j,L | X X | | X X | j -+ 1 X 2 X | 2: U_xr[i,j,:] = U | X X | i-1/2,j,R | X 4 X | j-1/2--+----------XXXXXXXXXXXX----------+ | | 3 | | 3: U_yl[i,j,:] = U | | | | i,j-1/2,L j-1 -+ | | | | | | | | | | | 4: U_yr[i,j,:] = U j-3/2--+----------+----------+----------+ i,j-1/2,R | | | | | | | i-1 i i+1 i-3/2 i-1/2 i+1/2 i+3/2 remember that the fluxes are stored on the left edge, so F_x[i,j,:] = F_x i-1/2, j F_y[i,j,:] = F_y i, j-1/2 """ tm_transverse = tc.timer("transverse flux addition") tm_transverse.begin() dtdx = dt/myg.dx dtdy = dt/myg.dy b = (2,1) for n in range(vars.nvar): # U_xl[i,j,:] = U_xl[i,j,:] - 0.5*dt/dy * (F_y[i-1,j+1,:] - F_y[i-1,j,:]) U_xl.v(buf=b, n=n)[:,:] += \ - 0.5*dtdy*(F_y.ip_jp(-1, 1, buf=b, n=n) - F_y.ip(-1, buf=b, n=n)) # U_xr[i,j,:] = U_xr[i,j,:] - 0.5*dt/dy * (F_y[i,j+1,:] - F_y[i,j,:]) U_xr.v(buf=b, n=n)[:,:] += \ - 0.5*dtdy*(F_y.jp(1, buf=b, n=n) - F_y.v(buf=b, n=n)) # U_yl[i,j,:] = U_yl[i,j,:] - 0.5*dt/dx * (F_x[i+1,j-1,:] - F_x[i,j-1,:]) U_yl.v(buf=b, n=n)[:,:] += \ - 0.5*dtdx*(F_x.ip_jp(1, -1, buf=b, n=n) - F_x.jp(-1, buf=b, n=n)) # U_yr[i,j,:] = U_yr[i,j,:] - 0.5*dt/dx * (F_x[i+1,j,:] - F_x[i,j,:]) U_yr.v(buf=b, n=n)[:,:] += \ - 0.5*dtdx*(F_x.ip(1, buf=b, n=n) - F_x.v(buf=b, n=n)) tm_transverse.end() #========================================================================= # construct the fluxes normal to the interfaces #========================================================================= # up until now, F_x and F_y stored the transverse fluxes, now we # overwrite with the fluxes normal to the interfaces tm_riem.begin() _fx = riemannFunc(1, myg.qx, myg.qy, myg.ng, vars.nvar, vars.idens, vars.ixmom, vars.iymom, vars.iener, solid.xl, solid.xr, gamma, U_xl.d, U_xr.d) _fy = riemannFunc(2, myg.qx, myg.qy, myg.ng, vars.nvar, vars.idens, vars.ixmom, vars.iymom, vars.iener, solid.yl, solid.yr, gamma, U_yl.d, U_yr.d) F_x = patch.ArrayIndexer(d=_fx, grid=myg) F_y = patch.ArrayIndexer(d=_fy, grid=myg) tm_riem.end() #========================================================================= # apply artificial viscosity #========================================================================= cvisc = rp.get_param("compressible.cvisc") _ax, _ay = interface_f.artificial_viscosity( myg.qx, myg.qy, myg.ng, myg.dx, myg.dy, cvisc, u.d, v.d) avisco_x = patch.ArrayIndexer(d=_ax, grid=myg) avisco_y = patch.ArrayIndexer(d=_ay, grid=myg) b = (2,1) # F_x = F_x + avisco_x * (U(i-1,j) - U(i,j)) F_x.v(buf=b, n=vars.idens)[:,:] += \ avisco_x.v(buf=b)*(dens.ip(-1, buf=b) - dens.v(buf=b)) F_x.v(buf=b, n=vars.ixmom)[:,:] += \ avisco_x.v(buf=b)*(xmom.ip(-1, buf=b) - xmom.v(buf=b)) F_x.v(buf=b, n=vars.iymom)[:,:] += \ avisco_x.v(buf=b)*(ymom.ip(-1, buf=b) - ymom.v(buf=b)) F_x.v(buf=b, n=vars.iener)[:,:] += \ avisco_x.v(buf=b)*(ener.ip(-1, buf=b) - ener.v(buf=b)) # F_y = F_y + avisco_y * (U(i,j-1) - U(i,j)) F_y.v(buf=b, n=vars.idens)[:,:] += \ avisco_y.v(buf=b)*(dens.jp(-1, buf=b) - dens.v(buf=b)) F_y.v(buf=b, n=vars.ixmom)[:,:] += \ avisco_y.v(buf=b)*(xmom.jp(-1, buf=b) - xmom.v(buf=b)) F_y.v(buf=b, n=vars.iymom)[:,:] += \ avisco_y.v(buf=b)*(ymom.jp(-1, buf=b) - ymom.v(buf=b)) F_y.v(buf=b, n=vars.iener)[:,:] += \ avisco_y.v(buf=b)*(ener.jp(-1, buf=b) - ener.v(buf=b)) tm_flux.end() return F_x, F_y
def fluxes(my_data, rp, vars, solid, tc): """ unsplitFluxes returns the fluxes through the x and y interfaces by doing an unsplit reconstruction of the interface values and then solving the Riemann problem through all the interfaces at once currently we assume a gamma-law EOS Parameters ---------- my_data : CellCenterData2d object The data object containing the grid and advective scalar that we are advecting. rp : RuntimeParameters object The runtime parameters for the simulation vars : Variables object The Variables object that tells us which indices refer to which variables tc : TimerCollection object The timers we are using to profile Returns ------- out : ndarray, ndarray The fluxes on the x- and y-interfaces """ tm_flux = tc.timer("unsplitFluxes") tm_flux.begin() myg = my_data.grid gamma = rp.get_param("eos.gamma") #========================================================================= # compute the primitive variables #========================================================================= # Q = (rho, u, v, p) dens = my_data.get_var("density") xmom = my_data.get_var("x-momentum") ymom = my_data.get_var("y-momentum") ener = my_data.get_var("energy") r = dens # get the velocities u = xmom / dens v = ymom / dens # get the pressure e = (ener - 0.5 * (xmom**2 + ymom**2) / dens) / dens p = eos.pres(gamma, dens, e) smallp = 1.e-10 p = p.clip(smallp) # apply a floor to the pressure #========================================================================= # compute the flattening coefficients #========================================================================= # there is a single flattening coefficient (xi) for all directions use_flattening = rp.get_param("compressible.use_flattening") if use_flattening: delta = rp.get_param("compressible.delta") z0 = rp.get_param("compressible.z0") z1 = rp.get_param("compressible.z1") xi_x = reconstruction_f.flatten(1, p, u, myg.qx, myg.qy, myg.ng, smallp, delta, z0, z1) xi_y = reconstruction_f.flatten(2, p, v, myg.qx, myg.qy, myg.ng, smallp, delta, z0, z1) xi = reconstruction_f.flatten_multid(xi_x, xi_y, p, myg.qx, myg.qy, myg.ng) else: xi = 1.0 # monotonized central differences in x-direction tm_limit = tc.timer("limiting") tm_limit.begin() limiter = rp.get_param("compressible.limiter") if limiter == 0: limitFunc = reconstruction_f.nolimit elif limiter == 1: limitFunc = reconstruction_f.limit2 else: limitFunc = reconstruction_f.limit4 _ldelta_rx = xi * limitFunc(1, r, myg.qx, myg.qy, myg.ng) _ldelta_ux = xi * limitFunc(1, u, myg.qx, myg.qy, myg.ng) _ldelta_vx = xi * limitFunc(1, v, myg.qx, myg.qy, myg.ng) _ldelta_px = xi * limitFunc(1, p, myg.qx, myg.qy, myg.ng) # wrap these in ArrayIndexer objects ldelta_rx = ai.ArrayIndexer(d=_ldelta_rx, grid=myg) ldelta_ux = ai.ArrayIndexer(d=_ldelta_ux, grid=myg) ldelta_vx = ai.ArrayIndexer(d=_ldelta_vx, grid=myg) ldelta_px = ai.ArrayIndexer(d=_ldelta_px, grid=myg) # monotonized central differences in y-direction _ldelta_ry = xi * limitFunc(2, r, myg.qx, myg.qy, myg.ng) _ldelta_uy = xi * limitFunc(2, u, myg.qx, myg.qy, myg.ng) _ldelta_vy = xi * limitFunc(2, v, myg.qx, myg.qy, myg.ng) _ldelta_py = xi * limitFunc(2, p, myg.qx, myg.qy, myg.ng) ldelta_ry = ai.ArrayIndexer(d=_ldelta_ry, grid=myg) ldelta_uy = ai.ArrayIndexer(d=_ldelta_uy, grid=myg) ldelta_vy = ai.ArrayIndexer(d=_ldelta_vy, grid=myg) ldelta_py = ai.ArrayIndexer(d=_ldelta_py, grid=myg) tm_limit.end() #========================================================================= # x-direction #========================================================================= # left and right primitive variable states tm_states = tc.timer("interfaceStates") tm_states.begin() V_l = myg.scratch_array(vars.nvar) V_r = myg.scratch_array(vars.nvar) V_l.ip(1, n=vars.irho, buf=2)[:, :] = r.v(buf=2) + 0.5 * ldelta_rx.v(buf=2) V_r.v(n=vars.irho, buf=2)[:, :] = r.v(buf=2) - 0.5 * ldelta_rx.v(buf=2) V_l.ip(1, n=vars.iu, buf=2)[:, :] = u.v(buf=2) + 0.5 * ldelta_ux.v(buf=2) V_r.v(n=vars.iu, buf=2)[:, :] = u.v(buf=2) - 0.5 * ldelta_ux.v(buf=2) V_l.ip(1, n=vars.iv, buf=2)[:, :] = v.v(buf=2) + 0.5 * ldelta_vx.v(buf=2) V_r.v(n=vars.iv, buf=2)[:, :] = v.v(buf=2) - 0.5 * ldelta_vx.v(buf=2) V_l.ip(1, n=vars.ip, buf=2)[:, :] = p.v(buf=2) + 0.5 * ldelta_px.v(buf=2) V_r.v(n=vars.ip, buf=2)[:, :] = p.v(buf=2) - 0.5 * ldelta_px.v(buf=2) tm_states.end() # transform interface states back into conserved variables U_xl = myg.scratch_array(vars.nvar) U_xr = myg.scratch_array(vars.nvar) U_xl[:, :, vars.idens] = V_l[:, :, vars.irho] U_xl[:, :, vars.ixmom] = V_l[:, :, vars.irho] * V_l[:, :, vars.iu] U_xl[:, :, vars.iymom] = V_l[:, :, vars.irho] * V_l[:, :, vars.iv] U_xl[:,:,vars.iener] = eos.rhoe(gamma, V_l[:,:,vars.ip]) + \ 0.5*V_l[:,:,vars.irho]*(V_l[:,:,vars.iu]**2 + V_l[:,:,vars.iv]**2) U_xr[:, :, vars.idens] = V_r[:, :, vars.irho] U_xr[:, :, vars.ixmom] = V_r[:, :, vars.irho] * V_r[:, :, vars.iu] U_xr[:, :, vars.iymom] = V_r[:, :, vars.irho] * V_r[:, :, vars.iv] U_xr[:,:,vars.iener] = eos.rhoe(gamma, V_r[:,:,vars.ip]) + \ 0.5*V_r[:,:,vars.irho]*(V_r[:,:,vars.iu]**2 + V_r[:,:,vars.iv]**2) #========================================================================= # y-direction #========================================================================= # left and right primitive variable states tm_states.begin() V_l.jp(1, n=vars.irho, buf=2)[:, :] = r.v(buf=2) + 0.5 * ldelta_ry.v(buf=2) V_r.v(n=vars.irho, buf=2)[:, :] = r.v(buf=2) - 0.5 * ldelta_ry.v(buf=2) V_l.jp(1, n=vars.iu, buf=2)[:, :] = u.v(buf=2) + 0.5 * ldelta_uy.v(buf=2) V_r.v(n=vars.iu, buf=2)[:, :] = u.v(buf=2) - 0.5 * ldelta_uy.v(buf=2) V_l.jp(1, n=vars.iv, buf=2)[:, :] = v.v(buf=2) + 0.5 * ldelta_vy.v(buf=2) V_r.v(n=vars.iv, buf=2)[:, :] = v.v(buf=2) - 0.5 * ldelta_vy.v(buf=2) V_l.jp(1, n=vars.ip, buf=2)[:, :] = p.v(buf=2) + 0.5 * ldelta_py.v(buf=2) V_r.v(n=vars.ip, buf=2)[:, :] = p.v(buf=2) - 0.5 * ldelta_py.v(buf=2) tm_states.end() # transform interface states back into conserved variables U_yl = myg.scratch_array(vars.nvar) U_yr = myg.scratch_array(vars.nvar) U_yl[:, :, vars.idens] = V_l[:, :, vars.irho] U_yl[:, :, vars.ixmom] = V_l[:, :, vars.irho] * V_l[:, :, vars.iu] U_yl[:, :, vars.iymom] = V_l[:, :, vars.irho] * V_l[:, :, vars.iv] U_yl[:,:,vars.iener] = eos.rhoe(gamma, V_l[:,:,vars.ip]) + \ 0.5*V_l[:,:,vars.irho]*(V_l[:,:,vars.iu]**2 + V_l[:,:,vars.iv]**2) U_yr[:, :, vars.idens] = V_r[:, :, vars.irho] U_yr[:, :, vars.ixmom] = V_r[:, :, vars.irho] * V_r[:, :, vars.iu] U_yr[:, :, vars.iymom] = V_r[:, :, vars.irho] * V_r[:, :, vars.iv] U_yr[:,:,vars.iener] = eos.rhoe(gamma, V_r[:,:,vars.ip]) + \ 0.5*V_r[:,:,vars.irho]*(V_r[:,:,vars.iu]**2 + V_r[:,:,vars.iv]**2) #========================================================================= # construct the fluxes normal to the interfaces #========================================================================= tm_riem = tc.timer("Riemann") tm_riem.begin() riemann = rp.get_param("compressible.riemann") if riemann == "HLLC": riemannFunc = interface_f.riemann_hllc elif riemann == "CGF": riemannFunc = interface_f.riemann_cgf else: msg.fail("ERROR: Riemann solver undefined") _fx = riemannFunc(1, myg.qx, myg.qy, myg.ng, vars.nvar, vars.idens, vars.ixmom, vars.iymom, vars.iener, solid.xl, solid.xr, gamma, U_xl, U_xr) _fy = riemannFunc(2, myg.qx, myg.qy, myg.ng, vars.nvar, vars.idens, vars.ixmom, vars.iymom, vars.iener, solid.yl, solid.yr, gamma, U_yl, U_yr) F_x = ai.ArrayIndexer(d=_fx, grid=myg) F_y = ai.ArrayIndexer(d=_fy, grid=myg) tm_riem.end() #========================================================================= # apply artificial viscosity #========================================================================= cvisc = rp.get_param("compressible.cvisc") _ax, _ay = interface_f.artificial_viscosity(myg.qx, myg.qy, myg.ng, myg.dx, myg.dy, cvisc, u, v) avisco_x = ai.ArrayIndexer(d=_ax, grid=myg) avisco_y = ai.ArrayIndexer(d=_ay, grid=myg) b = (2, 1) # F_x = F_x + avisco_x * (U(i-1,j) - U(i,j)) F_x.v(buf=b, n=vars.idens)[:,:] += \ avisco_x.v(buf=b)*(dens.ip(-1, buf=b) - dens.v(buf=b)) F_x.v(buf=b, n=vars.ixmom)[:,:] += \ avisco_x.v(buf=b)*(xmom.ip(-1, buf=b) - xmom.v(buf=b)) F_x.v(buf=b, n=vars.iymom)[:,:] += \ avisco_x.v(buf=b)*(ymom.ip(-1, buf=b) - ymom.v(buf=b)) F_x.v(buf=b, n=vars.iener)[:,:] += \ avisco_x.v(buf=b)*(ener.ip(-1, buf=b) - ener.v(buf=b)) # F_y = F_y + avisco_y * (U(i,j-1) - U(i,j)) F_y.v(buf=b, n=vars.idens)[:,:] += \ avisco_y.v(buf=b)*(dens.jp(-1, buf=b) - dens.v(buf=b)) F_y.v(buf=b, n=vars.ixmom)[:,:] += \ avisco_y.v(buf=b)*(xmom.jp(-1, buf=b) - xmom.v(buf=b)) F_y.v(buf=b, n=vars.iymom)[:,:] += \ avisco_y.v(buf=b)*(ymom.jp(-1, buf=b) - ymom.v(buf=b)) F_y.v(buf=b, n=vars.iener)[:,:] += \ avisco_y.v(buf=b)*(ener.jp(-1, buf=b) - ener.v(buf=b)) tm_flux.end() return F_x, F_y