import conedy as co co.set("samplingTime", 1.0) co.set("barkley_I", 0.1) N = co.network() N.lattice(1,1,1.0,co.barkley()) N.observeTime("output/barkley.py.single") N.observeAll("output/barkley.py.single", co.component(0) ) N.observeAll("output/barkley.py.single", co.component(1) ) N.evolve(0.0,500.0)
#! /usr/bin/env python # -*- coding: utf-8 -*- import conedy as co N = co.network() nodeblueprint = co.gaussianRoessler() co.set("gaussianRoessler_a", 0.165) co.set("gaussianRoessler_b", 0.2) co.set("gaussianRoessler_c", 10.0) co.set("gaussianRoessler_sigmaNoise", 0.1) N.cycle(100, 4, nodeblueprint, co.weightedEdge(0.1)) N.rewire(0.1) print "clustering coefficient:" + str(N.meanClustering()) print "mean path length:" + str(N.meanPathLength()) if N.isConnected(): N.betweennessCentrality("N.betweenness") N.closenessCentrality("N.closeness") N.randomizeParameter("gaussianRoessler_omega", co.uniform(0.8, 1.2)) N.randomizeStates(nodeblueprint, co.uniform(-0.1, 0.1), co.uniform(-0.1, 0.1), co.uniform(-0.1, 0.1)) N.evolve(0.0, 100.0) N.observeTime("output_Roessler")
import conedy as co import numpy as np N = co.network() co.set("outputBinary", True) co.set("samplingTime", 0.015) N.observeTime("output/writeBinary.py.time") N.evolve(0.0, 10.0) N.removeObserver() print np.fromfile("output/writeBinary.py.time", dtype=np.float64)
import conedy as co import numpy as np N = co.network() co.set("outputBinary", True) co.set("samplingTime", 0.015) N.observeTime("output/writeBinary.py.time") N.evolve(0.0, 10.0) N.removeObserver() print np.fromfile("output/writeBinary.co.time", dtype=np.float64)
import conedy as co N = co.network() co.set("roessler_omega", 20.0) co.set("roessler_a", 0.165) co.set("roessler_b", 0.2) co.set("roessler_c", 10.0) co.set("lorenz_S", 10.0) co.set("lorenz_r", 28.0) co.set("lorenz_b", 8.0 / 3.0) co.set("samplingTime", 0.01) i = N.addNode(co.roessler()) j = N.addNode(co.lorenz()) N.addEdge(i, j, co.weightedEdge(2.5)) N.setState(i, 0.0, 0.0, 0.0) N.setState(j, 1.0, 1.0, 1.0) N.observeTime("output/roesslerLorenzCoupled.py.series") N.observe(i, "output/roesslerLorenzCoupled.py.series", co.component(0)) N.observe(i, "output/roesslerLorenzCoupled.py.series", co.component(1)) N.observe(i, "output/roesslerLorenzCoupled.py.series", co.component(2)) N.observe(j, "output/roesslerLorenzCoupled.py.series", co.component(0)) N.observe(j, "output/roesslerLorenzCoupled.py.series", co.component(1)) N.observe(j, "output/roesslerLorenzCoupled.py.series", co.component(2)) N.evolve(0.0, 1500.0)
import conedy as co co.set("samplingTime", 0.02) co.set("hodgkinHuxley_I", 20.0) N = co.network() N.lattice(1,1,1.0,co.hodgkinHuxley()) N.observeTime("output/hodgkinHuxley.co.single") N.observeAll("output/hodgkinHuxley.co.single",co.component(0)) N.observeAll("output/hodgkinHuxley.co.single",co.component(1)) N.evolve(0.0,500.0)
import conedy as co N = co.network() co.set("outputBinary", bool (1)) co.set("samplingTime" , 0.015) N.observeTime("output/writeBinary.py.time") #N.printNodeStatistics() N.evolve(0.0,10.0)
import conedy as co N = co.network() co.set("roessler_omega", 0.89) co.set("roessler_a", 0.165) co.set("roessler_b", 0.2) co.set("roessler_c", 10.0) co.set("samplingTime", 0.01) N.addNode(co.roessler()) #co.set("roessler_omega", 1.0) N.setParam (0, "roessler_omega", 1.0); N.addNode(co.roessler()) #N.addWeightedEdge(0,1,0.5) #N.addWeightedEdge(1,0,0.5) N.addEdge(0,1,co.weightedEdge(0.5)) N.addEdge(1,0,co.weightedEdge(0.5)) N.setState(0, 0.0,0.0,0.0) N.setState(1, 1.0,1.0,0.0)
import conedy as co N = co.network() co.set("kuramoto_omega", 0.1) co.set("samplingTime", 0.01) #just one kuramoto oscillator firstNodeNumber = N.addNode(co.kuramoto()) N.setState(firstNodeNumber, 0.0) N.observeTime("output/kuramoto.py.one") N.observe(0, "output/kuramoto.py.one", co.component(0)) N.evolve(0.0, 10.0) N.removeObserver() #adding a second. They should synchronize. secondNodeNumber = N.addNode(co.kuramoto()) N.addEdge(firstNodeNumber, secondNodeNumber, co.weightedEdge(0.1)) N.addEdge(secondNodeNumber, firstNodeNumber, co.weightedEdge(0.1)) #small ring of oscillators. Should not synchronize. N.setState(firstNodeNumber, 0.0) N.setState(secondNodeNumber, 0.3) N.observeTime("output/kuramoto.py.two") N.observeAll("output/kuramoto.py.two") N.evolve(0.0, 40.0) N.removeObserver() thirdNodeNumber = N.addNode(co.kuramoto())
import conedy as co N = co.network() co.set("roessler_omega", 20.0) co.set("roessler_a", 0.165) co.set("roessler_b", 0.2) co.set("roessler_c", 10.0) co.set("lorenz_S", 10.0) co.set("lorenz_r", 28.0) co.set("lorenz_b", 8.0/3.0) co.set("samplingTime", 0.01) i = N.addNode(co.roessler()) j = N.addNode(co.lorenz()) N.addEdge(i, j, co.weightedEdge(2.5)) N.setState(i, 0.0, 0.0, 0.0) N.setState(j, 1.0, 1.0, 1.0) N.observeTime("output/roesslerLorenzCoupled.py.series") N.observe(i,"output/roesslerLorenzCoupled.py.series",co.component(0)) N.observe(i,"output/roesslerLorenzCoupled.py.series",co.component(1)) N.observe(i,"output/roesslerLorenzCoupled.py.series",co.component(2)) N.observe(j,"output/roesslerLorenzCoupled.py.series",co.component(0)) N.observe(j,"output/roesslerLorenzCoupled.py.series",co.component(1)) N.observe(j,"output/roesslerLorenzCoupled.py.series",co.component(2))
import conedy as co fehlerzahl = 0 for combo in [("samplingTime", "blue"), ("samplingTime", 1), ("samplingTime", True), ("samplingTime", 10.0), ("odeIsAdaptive", "Horst"), ("odeIsAdaptive", 3.14), ("odeIsAdaptive", True), ("odeStepType", 42), ("odeStepType", 2.72), ("odeStepType", True), ("odeStepType", "gsl_odeiv_step_rk8pd"), ("outputPrecision", 1.41), ("outputPrecision", "Fisch"), ("outputPrecision", 12)]: try: co.set(combo[0], combo[1]) except: fehlerzahl += 1 print "Should be 10: %i" % fehlerzahl
import conedy as co N = co.network() co.set("samplingTime" , 0.015) N.observeTime("output/observeTime.py.time") N.evolve(0.0,10.0)
import conedy as co co.set("samplingTime", 10.0) co.set("odeIsAdaptive", True) co.set("odeStepType", "gsl_odeiv_step_rk8pd") co.set("outputPrecision", 4)
import conedy as co N = co.network() co.set("samplingTime", 1000.0) nodeNumber = N.addNode(co.pcoIntegrateFire()) N.observeTime("output/evolve2.py.series") N.observe(nodeNumber, "output/evolve2.py.series") for i in range(0, 100): #observe the state of the node at times 0.3 * n N.evolve(0.03 * i, 0.03 * (i + 1))
#!/usr/bin/python # coding=utf8 import conedy as co def foo(): N = co.network() N.addNode(co.lorenz()) N.evolve(0, 100) for i in range(0,10): print i co.set("progressVerbosity", 0.0) # co.set("stepSize", 0.01) foo() #N.clear()
import conedy as co N = co.network() co.set("samplingTime" , 1000.0) nodeNumber = N.addNode(co.pcoIntegrateFire()) N.observeTime("output/evolve2.py.series") N.observe(nodeNumber, "output/evolve2.py.series") for i in range (0, 100): #observe the state of the node at times 0.3 * n N.evolve ( 0.03 * i, 0.03 *( i+1))
import conedy as co fehlerzahl = 0 for combo in [ ("samplingTime", "blue"), ("samplingTime", 1), ("samplingTime", True), ("samplingTime", 10.0), ("odeIsAdaptive", "Horst"), ("odeIsAdaptive", 3.14), ("odeIsAdaptive", True), ("odeStepType", 42), ("odeStepType", 2.72), ("odeStepType", True), ("odeStepType", "gsl_odeiv_step_rk8pd"), ("outputPrecision", 1.41), ("outputPrecision", "Fisch"), ("outputPrecision", 12) ]: try: co.set(combo[0], combo[1]) except: fehlerzahl += 1 print "Should be 10: %i" % fehlerzahl
import conedy as co co.set("samplingTime", 1.0) N = co.network() newNodeNumber = N.addNode(co.logisticMap()) N.setState(newNodeNumber, 0.3) N.observe(newNodeNumber, "output/observe.py.series") N.evolve(0.0, 1000.0)
import conedy as co N = co.network() co.set("lorenz_S", 10.0) co.set("lorenz_r", 28.0) co.set("lorenz_b", 8.0/3.0) co.set("samplingTime" , 0.01) N.addNode(co.lorenz()) N.setState(0, 1.0, 1.0, 1.0) N.observeTime("output/lorenz.py.series") N.observeAll("output/lorenz.py.series", co.component(0)) N.observeAll("output/lorenz.py.series", co.component(1)) N.observeAll("output/lorenz.py.series", co.component(2)) N.evolve(0.0,1500.0)
import conedy as co N = co.network() co.set ("samplingTime" , 1.0); for i in range (0,100): N.addNode(co.logisticMap()) N.randomizeStates(co.logisticMap(), co.constant (0.4)) N.observeSum("output/observeSum.py.sum") N.evolve(0.0,100.0)
import conedy as co N = co.network() co.set("kuramoto_omega", 0.1) co.set("samplingTime", 0.01) #just one kuramoto oscillator firstNodeNumber = N.addNode(co.kuramoto()) N.setState(firstNodeNumber, 0.0 ) N.observeTime("output/kuramoto.py.one") N.observe(0,"output/kuramoto.py.one", co.component(0)) N.evolve(0.0,10.0) N.removeObserver() #adding a second. They should synchronize. secondNodeNumber = N.addNode(co.kuramoto()) N.addEdge (firstNodeNumber,secondNodeNumber ,co.weightedEdge(0.1)) N.addEdge (secondNodeNumber, firstNodeNumber ,co.weightedEdge(0.1)) #small ring of oscillators. Should not synchronize. N.setState(firstNodeNumber, 0.0 ) N.setState(secondNodeNumber, 0.3 )
import conedy as co N = co.network() co.set("ornUhl_drift" , 0.2) co.set("ornUhl_diffusion" , 0.1) co.set("samplingTime", 0.1) N.addNode(co.ornUhl()) N.setState(0, 1.0) N.observeTime("output/sdeIntegrator.py.series") N.observeAll("output/sdeIntegrator.py.series", co.component(0)) N.evolve(0.0,15000.0) # to calculate the variance of the ornstein-uhlenbeck # the variance should be diffusion^2/(2*drift) file = open('output/sdeIntegrator.py.series') sum = 0 s2 = 0 n = 0 for line in file: fl = float(line.split()[1]) sum += fl s2 += fl*fl
import conedy as co N = co.network() co.set ("roessler_a", 0.22) co.set ("roessler_b", 0.1) co.set ("roessler_c", 8.5) r1 = N.addNode(co.roessler()) r2 = N.addNode(co.roessler()) r3 = N.addNode(co.roessler()) N.setParam(r1, "roessler_omega", 1.02) N.setParam(r2, "roessler_omega", 1.0) N.setParam(r3, "roessler_omega", 0.98) N.randomizeStates (co.roessler(), co.uniform (-10.0, 10.0),co.uniform (-5.0, 5.0), co.uniform (-0.5, 1.5)) N.addEdge(r1, r2, co.weightedEdge(0.075)) N.addEdge(r2, r1, co.weightedEdge(0.075)) N.addEdge(r1, r3, co.weightedEdge(0.075)) N.addEdge(r3, r1, co.weightedEdge(0.075)) N.evolve(0.0, 100.0) N.observeTime("roessler.dat") N.observe(r1, "roessler.dat", co.component(1)) N.observe(r2, "roessler.dat", co.component(1)) N.observe(r3, "roessler.dat", co.component(1)) co.set("samplingTime", 0.01) N.evolve(100.0, 200.0)
import conedy as co N = co.network() co.set("lorenz_S", 10.0) co.set("lorenz_r", 28.0) co.set("lorenz_b", 8.0 / 3.0) co.set("samplingTime", 0.01) N.addNode(co.lorenz()) N.setState(0, 1.0, 1.0, 1.0) N.observeTime("output/lorenz.py.series") N.observeAll("output/lorenz.py.series", co.component(0)) N.observeAll("output/lorenz.py.series", co.component(1)) N.observeAll("output/lorenz.py.series", co.component(2)) N.evolve(0.0, 1500.0)
import conedy as co co.set("pcoMirollo_a" , 0.015) co.set("pcoMirollo_b" , 0.045) N = co.network() N.randomNetwork(1000, 0.01, co.pcoMirollo(),co.edge()) N.randomizeStates(co.pcoMirollo(), co.uniform(0.0, 1.0)) N.observeTime("order.dat") N.observePhaseCoherence("order.dat") N.evolve(0.0, 1000.0)
import conedy as co co.set("samplingTime", 0.02) co.set("hodgkinHuxley_I", 20.0) N = co.network() N.lattice(1, 1, 1.0, co.hodgkinHuxley()) N.observeTime("output/hodgkinHuxley.co.single") N.observeAll("output/hodgkinHuxley.co.single", co.component(0)) N.observeAll("output/hodgkinHuxley.co.single", co.component(1)) N.evolve(0.0, 500.0)
import conedy as co N = co.network() co.set ("gaussianBarkley_sigma", 0.18) bark = co.gaussianBarkley() bark.setState (0.0, 0.0) N.lattice(512, 512, 1.0, bark, co.staticWeightedEdge (3.84)) N.rewire(0.001) N.evolve(0.0, 20.0) N.observeAll("waves.dat", co.component(0)) N.snapshot()
import conedy as co co.set("samplingTime", 0.025) co.set("pcoIntegrateFire_noiseFrequency", 0.0) co.set("pcoIntegrateFire_timeDelay", 0.01) co.set("pcoIntegrateFire_t_ref", 0.05) co.set("pcoIntegrateFire_alpha", 0.9) N = co.network() rewiring = 0.5 coupling = 0.012 #n.useLatticePositioning(100,100); N.torusNearestNeighbors(40,40,36.0, co.pcoIntegrateFire(), co.weightedEdge()) N.rewire(rewiring) N.randomizeStates(co.pcoIntegrateFire(), co.uniform(0.0,1.0)); N.randomizeWeights(co.uniform(coupling,coupling)); N.saveAdjacencyList("output/nonconverging.py.graph");
import conedy as co N = co.network() i = N.addNode(co.roessler()) co.set("nodeVerbosity", 0) co.set("edgeVerbosity", 0) print "nodeVerbosity = 0, edgeVerbosity = 0\n" print "------------------------------------\n" N.printNodeStatistics() print"\n\n" co.set("nodeVerbosity", 1) co.set("edgeVerbosity", 0) print "nodeVerbosity = 1, edgeVerbosity = 0\n" print "------------------------------------\n" N.printNodeStatistics() print"\n\n" co.set("nodeVerbosity", 2) co.set("edgeVerbosity", 0) print "nodeVerbosity = 2, edgeVerbosity = 0\n" print "------------------------------------\n" N.printNodeStatistics() print"\n\n" j = N.addNode(co.roessler()) N.addEdge(i, j, co.weightedEdge(1.0))
import conedy as co N = co.network() i = N.addNode(co.roessler()) co.set("nodeVerbosity", 0) co.set("edgeVerbosity", 0) print "nodeVerbosity = 0, edgeVerbosity = 0\n" print "------------------------------------\n" N.printNodeStatistics() print "\n\n" co.set("nodeVerbosity", 1) co.set("edgeVerbosity", 0) print "nodeVerbosity = 1, edgeVerbosity = 0\n" print "------------------------------------\n" N.printNodeStatistics() print "\n\n" co.set("nodeVerbosity", 2) co.set("edgeVerbosity", 0) print "nodeVerbosity = 2, edgeVerbosity = 0\n" print "------------------------------------\n" N.printNodeStatistics() print "\n\n" j = N.addNode(co.roessler()) N.addEdge(i, j, co.weightedEdge(1.0)) co.set("nodeVerbosity", 2) co.set("edgeVerbosity", 1)
import conedy as co N = co.network() co.set("samplingTime", 0.01) co.set("roessler_omega", 0.89) co.set("roessler_a", 0.165) co.set("roessler_b", 0.2) co.set("roessler_c", 10.0) N.addNode(co.roessler()) N.setState(0, 0.0, 0.0, 0.0) N.observeTime("output/roessler.py.series") N.observeAll("output/roessler.py.series", co.component(0)) N.observeAll("output/roessler.py.series", co.component(1)) N.observeAll("output/roessler.py.series", co.component(2)) N.evolve(0.0, 1500.0)
import conedy as co N = co.network() co.set("gaussianRoessler_omega", 0.89) co.set("gaussianRoessler_a", 0.165) co.set("gaussianRoessler_b", 0.2) co.set("gaussianRoessler_c", 10.0) co.set("gaussianRoessler_sigmaNoise", 1.0) co.set("samplingTime", 0.01) N.addNode(co.gaussianRoessler()) N.setState(0, 0.0, 0.0, 0.0) N.observeTime("output/gaussianRoessler.py.series") N.observeAll("output/gaussianRoessler.py.series", co.component(0)) N.observeAll("output/gaussianRoessler.py.series", co.component(1)) N.observeAll("output/gaussianRoessler.py.series", co.component(2)) N.evolve(0.0, 1500.0)
import conedy as co N = co.network() co.setRandomSeed(0) co.set("gaussianLorenz_S", 10.0) co.set("gaussianLorenz_r", 28.0) co.set("gaussianLorenz_b", 8.0/3.0) co.set("gaussianLorenz_sigmaNoise", 10.0) co.set("samplingTime", 0.01) N.addNode(co.gaussianLorenz()) N.setState(0, 1.0, 1.0, 1.0) N.observeTime("output/gaussianLorenz.py.series") N.observeAll("output/gaussianLorenz.py.series", co.component(0)) N.observeAll("output/gaussianLorenz.py.series", co.component(1)) N.observeAll("output/gaussianLorenz.py.series", co.component(2)) N.evolve(0.0,1500.0)