def var_coat(alg_kwargs, var_all): alg_kwargs = config.dictify(alg_kwargs) alg_kwargs['n_epochs'] = n_epochs alg_kwargs['var_all'] = var_all kwargs_str = config.stringify(alg_kwargs) kwargs_file = path.join(curve_dir, 'COAT_%s.p' % kwargs_str) alg_kwargs['eval_space'] = eval_space alg_kwargs['kwargs_file'] = kwargs_file algo = VARREC(**alg_kwargs) algo.fit(trainset, testset) predictions = algo.test(testset) mae = accuracy.mae(predictions, **{'verbose': False}) mse = pow(accuracy.rmse(predictions, **{'verbose': False}), 2.0) print('%.4f %.4f %s' % (mae, mse, kwargs_str)) stdout.flush()
from os import path from sys import stdout import config import itertools import matplotlib.pyplot as plt import numpy as np import operator import time gsearch_file = tune_coat_file err_kwargs, kwargs_set = config.read_gsearch(gsearch_file) lr_all_opt, reg_all_opt = set(), set() for kwargs_str in kwargs_set: alg_kwargs = config.dictify(kwargs_str) lr_all_opt.add(alg_kwargs['lr_all']) reg_all_opt.add(alg_kwargs['reg_all']) n_epochs = coat_n_epochs epochs = np.arange(1, 1 + n_epochs) lr_all_opt = sorted(list(lr_all_opt)) reg_all_opt = sorted(list(reg_all_opt)) lr_part_opt = [lr_all_opt[i] for i in [ 2, ]] lr_part_opt = [lr_all_opt[i] for i in [ 0, 1, 2,