Beispiel #1
0
def test_stack(**kwargs):
    opt = DefaultConfig()
    opt.update(**kwargs)

    logger = Logger()

    result_dir = '/home/dyj/'
    resmat = [result_dir+'TextCNN1_2017-07-27#12:30:16_test_res.pt',\
              result_dir+'TextCNN2_2017-07-27#12:22:42_test_res.pt', \
              result_dir+'RNN1_2017-07-27#12:35:51_test_res.pt',\
              result_dir+'RNN2_2017-07-27#11:33:24_test_res.pt',\
              result_dir+'RCNN1_2017-07-27#11:30:42_test_res.pt',\
              result_dir+'RCNNcha_2017-07-27#16:00:33_test_res.pt',\
              result_dir+'FastText4_2017-07-28#17:20:21_test_res.pt',\
              result_dir+'FastText1_2017-07-29#10:47:46_test_res.pt']
    opt['stack_num'] = len(resmat)

    test_dataset = Stack_Dataset(resmat=resmat, test=True)
    test_loader = data.DataLoader(test_dataset,
                                  shuffle=False,
                                  batch_size=opt['batch_size'])

    test_idx = np.load(opt['test_idx'])
    topic_idx = np.load(opt['topic_idx'])

    logger.info('Using model {}'.format(opt['model']))
    Model = getattr(models, opt['model'])
    model = Model(opt)
    print model

    if opt['load']:
        if opt.get('load_name', None) is None:
            model = load_model(model,
                               model_dir=opt['model_dir'],
                               model_name=opt['model'])
        else:
            model = load_model(model, model_dir=opt['model_dir'], model_name=opt['model'], \
                              name=opt['load_name'])

    if opt['device'] != None:
        torch.cuda.set_device(opt['device'])

    if opt['cuda']:
        model.cuda()

    logger.info('Start testing...')

    model.eval()
    predict_label_list = []
    res = torch.Tensor(opt['test_num'], opt['class_num'])
    for i, batch in enumerate(test_loader, 0):
        batch_size = batch[0].size(0)
        resmat = batch
        resmat = [Variable(ii) for ii in resmat]
        if opt['cuda']:
            resmat = [ii.cuda() for ii in resmat]
        logit = model(resmat)
        if opt.get('save_resmat', False):
            res[i * opt['batch_size']:i * opt['batch_size'] +
                batch_size] = logit.data.cpu()
        predict_label_list += [list(ii) for ii in logit.topk(5, 1)[1].data]

    if opt.get('save_resmat', False):
        torch.save(
            res, '{}/{}_{}_test_res.pt'.format(
                opt['result_dir'], opt['model'],
                datetime.datetime.now().strftime('%Y-%m-%d#%H:%M:%S')))
        return

    lines = []
    for qid, top5 in zip(test_idx, predict_label_list):
        topic_ids = [topic_idx[i] for i in top5]
        lines.append('{},{}'.format(qid, ','.join(topic_ids)))

    if opt.get('load_name', None) is None:
        write_result(lines,
                     model_dir=opt['model_dir'],
                     model_name=opt['model'],
                     result_dir=opt['result_dir'])
    else:
        write_result(lines, model_dir=opt['model_dir'], model_name=opt['model'], \
                          name=opt['load_name'], result_dir=opt['result_dir'])
Beispiel #2
0
def test(**kwargs):
    opt = DefaultConfig()
    opt.update(**kwargs)

    logger = Logger()

    prefix = ''
    if opt['use_double_length']: prefix += '_2'
    print prefix
    if opt['use_char']:
        logger.info('Load char data starting...')
        opt['embed_num'] = opt['char_embed_num']
        embed_mat = np.load(opt['char_embed'])
        test_title = np.load(opt['test_title_char' + prefix])
        test_desc = np.load(opt['test_desc_char' + prefix])
        logger.info('Load char data finished!')
    elif opt['use_word']:
        logger.info('Load word data starting...')
        opt['embed_num'] = opt['word_embed_num']
        embed_mat = np.load(opt['word_embed'])
        test_title = np.load(opt['test_title_word' + prefix])
        test_desc = np.load(opt['test_desc_word' + prefix])
        logger.info('Load word data finished!')
    elif opt['use_char_word']:
        logger.info('Load char-word data starting...')
        embed_mat_char = np.load(opt['char_embed'])
        embed_mat_word = np.load(opt['word_embed'])
        embed_mat = np.vstack((embed_mat_char, embed_mat_word))
        test_title = np.load(opt['test_title_char' + prefix])
        test_desc = np.load(opt['test_desc_word' + prefix])
        logger.info('Load char-word data finished!')
    elif opt['use_word_char']:
        logger.info('Load word-char data starting...')
        embed_mat_char = np.load(opt['char_embed'])
        embed_mat_word = np.load(opt['word_embed'])
        embed_mat = np.vstack((embed_mat_char, embed_mat_word))
        test_title = np.load(opt['test_title_word' + prefix])
        test_desc = np.load(opt['test_desc_char' + prefix])
        logger.info('Load word-char data finished!')

    test_idx = np.load(opt['test_idx'])
    topic_idx = np.load(opt['topic_idx'])

    test_dataset = Dataset(test=True, title=test_title, desc=test_desc)
    test_loader = data.DataLoader(test_dataset,
                                  shuffle=False,
                                  batch_size=opt['batch_size'])

    logger.info('Using model {}'.format(opt['model']))
    Model = getattr(models, opt['model'])
    model = Model(embed_mat, opt)

    if opt['load']:
        if opt.get('load_name', None) is None:
            model = load_model(model,
                               model_dir=opt['model_dir'],
                               model_name=opt['model'])
        else:
            model = load_model(model, model_dir=opt['model_dir'], model_name=opt['model'], \
                              name=opt['load_name'])

    if opt['device'] != None:
        torch.cuda.set_device(opt['device'])

    if opt['cuda']:
        model.cuda()

    logger.info('Start testing...')

    model.eval()
    predict_label_list = []
    res = torch.Tensor(opt['test_num'], opt['class_num'])
    for i, batch in enumerate(test_loader, 0):
        batch_size = batch[0].size(0)
        title, desc = batch
        title, desc = Variable(title), Variable(desc)
        if opt['cuda']:
            title, desc = title.cuda(), desc.cuda()
        logit = model(title, desc)
        if opt.get('save_resmat', False):
            res[i * opt['batch_size']:i * opt['batch_size'] +
                batch_size] = logit.data.cpu()
        predict_label_list += [list(ii) for ii in logit.topk(5, 1)[1].data]

    if opt.get('save_resmat', False):
        torch.save(res, '{}/{}_test_res.pt'.format(opt['result_dir'],
                                                   opt['model']))
        return

    lines = []
    for qid, top5 in zip(test_idx, predict_label_list):
        topic_ids = [topic_idx[i] for i in top5]
        lines.append('{},{}'.format(qid, ','.join(topic_ids)))

    if opt.get('load_name', None) is None:
        write_result(lines,
                     model_dir=opt['model_dir'],
                     model_name=opt['model'],
                     result_dir=opt['result_dir'])
    else:
        write_result(lines, model_dir=opt['model_dir'], model_name=opt['model'], \
                          name=opt['load_name'], result_dir=opt['result_dir'])
Beispiel #3
0
def train_stack(**kwargs):
    opt = DefaultConfig()
    opt.update(**kwargs)

    vis = Visualizer(opt['model'])
    logger = Logger()

    result_dir = '/home/dyj/'
    resmat = [(result_dir + 'RNN10_cal_res.pt', 10),\
              (result_dir + 'TextCNN10_char.pt', 10),\
              (result_dir + 'TextCNN10_top1.pt', 10),\
              (result_dir + 'TextCNN10_top1_char.pt', 10),\
              (result_dir + 'FastText10_res.pt', 10),\
              ('/mnt/result/results/TextCNN5_12h.pt', 5),\
              ('/mnt/result/results/RNN1_char.pt', 1)
              ]
    label = result_dir + 'label.pt'
    opt['stack_num'] = len(resmat)

    train_dataset = Stack_Dataset(resmat=resmat, label=label)
    train_loader = data.DataLoader(train_dataset,
                                   shuffle=True,
                                   batch_size=opt['batch_size'])

    logger.info('Using model {}'.format(opt['model']))
    Model = getattr(models, opt['model'])
    model = Model(opt)
    print model

    if opt['use_self_loss']:
        Loss = getattr(models, opt['loss_function'])
    else:
        Loss = getattr(nn, opt['loss_function'])

    if opt['load']:
        if opt.get('load_name', None) is None:
            model = load_model(model,
                               model_dir=opt['model_dir'],
                               model_name=opt['model'])
        else:
            model = load_model(model, model_dir=opt['model_dir'], model_name=opt['model'], \
                              name=opt['load_name'])

    if opt['device'] != None:
        torch.cuda.set_device(opt['device'])

    if opt['cuda']:
        model.cuda()

    loss_function = Loss()
    optimizer = torch.optim.Adam(model.parameters(), lr=opt['lr'])

    logger.info('Start running...')

    steps = 0
    model.train()
    for epoch in range(opt['base_epoch'] + 1, opt['epochs'] + 1):
        for i, batch in enumerate(train_loader, 1):
            resmat, label = batch[0:-1], batch[-1]
            resmat, label = [Variable(ii) for ii in resmat], Variable(label)
            if opt['cuda']:
                resmat, label = [ii.cuda() for ii in resmat], label.cuda()

            optimizer.zero_grad()
            logit = model(resmat)

            loss = loss_function(logit, label)
            loss.backward()
            optimizer.step()

            steps += 1
            if steps % opt['log_interval'] == 0:
                corrects = ((logit.data >
                             opt['threshold']) == (label.data).byte()).sum()
                accuracy = 100.0 * corrects / (opt['batch_size'] *
                                               opt['class_num'])
                log_info = 'Steps[{:>8}] (epoch[{:>2}] / batch[{:>5}]) - loss: {:.6f}, acc: {:.4f} % ({} / {})'.format( \
                                steps, epoch, i, loss.data[0], accuracy, \
                                corrects, opt['batch_size'] * opt['class_num'])
                logger.info(log_info)
                vis.plot('loss', loss.data[0])
                precision, recall, score = get_score(logit.data.cpu(),
                                                     label.data.cpu())
                logger.info('Precision {}, Recall {}, Score {}'.format(
                    precision, recall, score))
                vis.plot('score', score)
        logger.info('Training epoch {} finished!'.format(epoch))
        #save_model(model, model_dir=opt['model_dir'], model_name=opt['model'], epoch=epoch)
        if epoch == 3:
            for param_group in optimizer.param_groups:
                param_group['lr'] = opt['lr'] * opt['lr_decay']
    save_model(model,
               model_dir=opt['model_dir'],
               model_name=opt['model'],
               epoch=epoch)
Beispiel #4
0
def train(**kwargs):
    opt = DefaultConfig()
    opt.update(**kwargs)

    vis = Visualizer(opt['model'])
    logger = Logger()

    prefix = ''
    if opt['use_double_length']: prefix += '_2'
    print prefix
    if opt['use_char']:
        logger.info('Load char data starting...')
        opt['embed_num'] = opt['char_embed_num']
        embed_mat = np.load(opt['char_embed'])
        train_title = np.load(opt['train_title_char' + prefix])
        train_desc = np.load(opt['train_desc_char' + prefix])
        train_label = np.load(opt['train_label'])
        val_title = np.load(opt['val_title_char' + prefix])
        val_desc = np.load(opt['val_desc_char' + prefix])
        val_label = np.load(opt['val_label'])
        logger.info('Load char data finished!')
    elif opt['use_word']:
        logger.info('Load word data starting...')
        opt['embed_num'] = opt['word_embed_num']
        embed_mat = np.load(opt['word_embed'])
        train_title = np.load(opt['train_title_word' + prefix])
        train_desc = np.load(opt['train_desc_word' + prefix])
        train_label = np.load(opt['train_label'])
        val_title = np.load(opt['val_title_word' + prefix])
        val_desc = np.load(opt['val_desc_word' + prefix])
        val_label = np.load(opt['val_label'])
        logger.info('Load word data finished!')
    elif opt['use_char_word']:
        logger.info('Load char-word data starting...')
        embed_mat_char = np.load(opt['char_embed'])
        embed_mat_word = np.load(opt['word_embed'])
        embed_mat = np.vstack((embed_mat_char, embed_mat_word))
        train_title = np.load(opt['train_title_char' + prefix])
        train_desc = np.load(opt['train_desc_word' + prefix])
        train_label = np.load(opt['train_label'])
        val_title = np.load(opt['val_title_char' + prefix])
        val_desc = np.load(opt['val_desc_word' + prefix])
        val_label = np.load(opt['val_label'])
        logger.info('Load char-word data finished!')
    elif opt['use_word_char']:
        logger.info('Load word-char data starting...')
        embed_mat_char = np.load(opt['char_embed'])
        embed_mat_word = np.load(opt['word_embed'])
        embed_mat = np.vstack((embed_mat_char, embed_mat_word))
        train_title = np.load(opt['train_title_word' + prefix])
        train_desc = np.load(opt['train_desc_char' + prefix])
        train_label = np.load(opt['train_label'])
        val_title = np.load(opt['val_title_word' + prefix])
        val_desc = np.load(opt['val_desc_char' + prefix])
        val_label = np.load(opt['val_label'])
        logger.info('Load word-char data finished!')

    train_dataset = Dataset(title=train_title,
                            desc=train_desc,
                            label=train_label,
                            class_num=opt['class_num'])
    train_loader = data.DataLoader(train_dataset,
                                   shuffle=True,
                                   batch_size=opt['batch_size'])
    val_dataset = Dataset(title=val_title,
                          desc=val_desc,
                          label=val_label,
                          class_num=opt['class_num'])
    val_loader = data.DataLoader(val_dataset,
                                 shuffle=False,
                                 batch_size=opt['batch_size'])

    logger.info('Using model {}'.format(opt['model']))
    Model = getattr(models, opt['model'])
    model = Model(embed_mat, opt)
    print model

    loss_weight = torch.ones(opt['class_num'])
    if opt['boost']:
        if opt['base_layer'] != 0:
            cal_res = torch.load('{}/{}/layer_{}_cal_res_3.pt'.format(
                opt['model_dir'], opt['model'], opt['base_layer']),
                                 map_location=lambda storage, loc: storage)
            logger.info('Load cal_res successful!')
            loss_weight = torch.load('{}/{}/layer_{}_loss_weight_3.pt'.format(
                opt['model_dir'], opt['model'], opt['base_layer'] + 1),
                                     map_location=lambda storage, loc: storage)
        else:
            cal_res = torch.zeros(opt['val_num'], opt['class_num'])
        print 'cur_layer:', opt['base_layer'] + 1, \
              'loss_weight:', loss_weight.mean(), loss_weight.max(), loss_weight.min(), loss_weight.std()

    if opt['use_self_loss']:
        Loss = getattr(models, opt['loss_function'])
    else:
        Loss = getattr(nn, opt['loss_function'])

    if opt['load']:
        if opt.get('load_name', None) is None:
            model = load_model(model,
                               model_dir=opt['model_dir'],
                               model_name=opt['model'])
        else:
            model = load_model(model, model_dir=opt['model_dir'], model_name=opt['model'], \
                              name=opt['load_name'])

    if opt['cuda'] and opt['device'] != None:
        torch.cuda.set_device(opt['device'])

    if opt['cuda']:
        model.cuda()
        loss_weight = loss_weight.cuda()

    # import sys
    # precision, recall, score = eval(val_loader, model, opt, save_res=True)
    # print precision, recall, score
    # sys.exit()

    loss_function = Loss(weight=loss_weight + 1 - loss_weight.mean())
    optimizer = torch.optim.Adam(model.parameters(), lr=opt['lr'])

    logger.info('Start running...')

    steps = 0
    model.train()
    base_epoch = opt['base_epoch']
    for epoch in range(1, opt['epochs'] + 1):
        for i, batch in enumerate(train_loader, 0):
            title, desc, label = batch
            title, desc, label = Variable(title), Variable(desc), Variable(
                label).float()
            if opt['cuda']:
                title, desc, label = title.cuda(), desc.cuda(), label.cuda()

            optimizer.zero_grad()
            logit = model(title, desc)

            loss = loss_function(logit, label)
            loss.backward()
            optimizer.step()

            steps += 1
            if steps % opt['log_interval'] == 0:
                corrects = ((logit.data >
                             opt['threshold']) == (label.data).byte()).sum()
                accuracy = 100.0 * corrects / (opt['batch_size'] *
                                               opt['class_num'])
                log_info = 'Steps[{:>8}] (epoch[{:>2}] / batch[{:>5}]) - loss: {:.6f}, acc: {:.4f} % ({} / {})'.format( \
                                steps, epoch + base_epoch, (i+1), loss.data[0], accuracy, \
                                corrects, opt['batch_size'] * opt['class_num'])
                logger.info(log_info)
                vis.plot('loss', loss.data[0])
                precision, recall, score = eval(batch,
                                                model,
                                                opt,
                                                isBatch=True)
                vis.plot('score', score)
        logger.info('Training epoch {} finished!'.format(epoch + base_epoch))
        precision, recall, score = eval(val_loader, model, opt)
        log_info = 'Epoch[{}] - score: {:.6f} (precision: {:.4f}, recall: {:.4f})'.format( \
                            epoch + base_epoch, score, precision, recall)
        vis.log(log_info)
        save_model(model, model_dir=opt['model_dir'], model_name=opt['model'], \
                    epoch=epoch+base_epoch, score=score)
        if epoch + base_epoch == 2:
            model.opt['static'] = False
        elif epoch + base_epoch == 4:
            for param_group in optimizer.param_groups:
                param_group['lr'] = opt['lr'] * opt['lr_decay']
        elif epoch + base_epoch >= 5:
            if opt['boost']:
                res, truth = eval(val_loader, model, opt, return_res=True)
                ori_score = get_score(cal_res, truth)
                cal_res += res
                cur_score = get_score(cal_res, truth)
                logger.info('Layer {}: {}, Layer {}: {}'.format(
                    opt['base_layer'], ori_score, opt['base_layer'] + 1,
                    cur_score))
                loss_weight = get_loss_weight(cal_res, truth)
                torch.save(
                    cal_res, '{}/{}/layer_{}_cal_res_3.pt'.format(
                        opt['model_dir'], opt['model'], opt['base_layer'] + 1))
                logger.info('Save cal_res successful!')
                torch.save(
                    loss_weight, '{}/{}/layer_{}_loss_weight_3.pt'.format(
                        opt['model_dir'], opt['model'], opt['base_layer'] + 2))
            break