Beispiel #1
0
def main():
    args = parse_args()
    server_address = (args.address, args.port)
    httpd = HTTPServer(server_address, NMTHandler)
    logger.setLevel(args.logging_level)
    parameters = load_parameters()
    if args.config is not None:
        logger.info("Loading parameters from %s" % str(args.config))
        parameters = update_parameters(parameters, pkl2dict(args.config))

    if args.online:
        online_parameters = load_parameters_online()
        parameters = update_parameters(parameters, online_parameters)

    try:
        for arg in args.changes:
            try:
                k, v = arg.split('=')
            except ValueError:
                print(
                    'Overwritten arguments must have the form key=Value. \n Currently are: %s'
                    % str(args.changes))
                exit(1)
            try:
                parameters[k] = ast.literal_eval(v)
            except ValueError:
                parameters[k] = v
    except ValueError:
        print('Error processing arguments: (', k, ",", v, ")")
        exit(2)
    dataset = loadDataset(args.dataset)

    # For converting predictions into sentences
    # Dataset backwards compatibility
    bpe_separator = dataset.BPE_separator if hasattr(
        dataset,
        "BPE_separator") and dataset.BPE_separator is not None else '@@'
    # Build BPE tokenizer if necessary
    if 'bpe' in parameters['TOKENIZATION_METHOD'].lower():
        logger.info('Building BPE')
        if not dataset.BPE_built:
            dataset.build_bpe(parameters.get(
                'BPE_CODES_PATH',
                parameters['DATA_ROOT_PATH'] + '/training_codes.joint'),
                              separator=bpe_separator)
    # Build tokenization function
    tokenize_f = eval('dataset.' +
                      parameters.get('TOKENIZATION_METHOD', 'tokenize_bpe'))
    detokenize_function = eval(
        'dataset.' + parameters.get('DETOKENIZATION_METHOD', 'detokenize_bpe'))
    dataset.build_moses_tokenizer(language=parameters['SRC_LAN'])
    dataset.build_moses_detokenizer(language=parameters['TRG_LAN'])
    tokenize_general = dataset.tokenize_moses
    detokenize_general = dataset.detokenize_moses

    # Prediction parameters
    params_prediction = dict()
    params_prediction['max_batch_size'] = parameters.get('BATCH_SIZE', 20)
    params_prediction['n_parallel_loaders'] = parameters.get(
        'PARALLEL_LOADERS', 1)
    params_prediction['beam_size'] = parameters.get('BEAM_SIZE', 6)
    params_prediction['maxlen'] = parameters.get('MAX_OUTPUT_TEXT_LEN_TEST',
                                                 100)
    params_prediction['optimized_search'] = parameters['OPTIMIZED_SEARCH']
    params_prediction['model_inputs'] = parameters['INPUTS_IDS_MODEL']
    params_prediction['model_outputs'] = parameters['OUTPUTS_IDS_MODEL']
    params_prediction['dataset_inputs'] = parameters['INPUTS_IDS_DATASET']
    params_prediction['dataset_outputs'] = parameters['OUTPUTS_IDS_DATASET']
    params_prediction['search_pruning'] = parameters.get(
        'SEARCH_PRUNING', False)
    params_prediction['normalize_probs'] = True
    params_prediction['alpha_factor'] = parameters.get('ALPHA_FACTOR', 1.0)
    params_prediction['coverage_penalty'] = True
    params_prediction['length_penalty'] = True
    params_prediction['length_norm_factor'] = parameters.get(
        'LENGTH_NORM_FACTOR', 0.0)
    params_prediction['coverage_norm_factor'] = parameters.get(
        'COVERAGE_NORM_FACTOR', 0.0)
    params_prediction['pos_unk'] = parameters.get('POS_UNK', False)
    params_prediction['heuristic'] = parameters.get('HEURISTIC', 0)
    params_prediction['state_below_index'] = -1
    params_prediction['output_text_index'] = 0
    params_prediction['state_below_maxlen'] = -1 if parameters.get(
        'PAD_ON_BATCH', True) else parameters.get('MAX_OUTPUT_TEXT_LEN', 50)
    params_prediction['output_max_length_depending_on_x'] = parameters.get(
        'MAXLEN_GIVEN_X', True)
    params_prediction[
        'output_max_length_depending_on_x_factor'] = parameters.get(
            'MAXLEN_GIVEN_X_FACTOR', 3)
    params_prediction['output_min_length_depending_on_x'] = parameters.get(
        'MINLEN_GIVEN_X', True)
    params_prediction[
        'output_min_length_depending_on_x_factor'] = parameters.get(
            'MINLEN_GIVEN_X_FACTOR', 2)
    params_prediction['attend_on_output'] = parameters.get(
        'ATTEND_ON_OUTPUT', 'transformer' in parameters['MODEL_TYPE'].lower())

    # Manage pos_unk strategies
    if parameters['POS_UNK']:
        mapping = None if dataset.mapping == dict() else dataset.mapping
    else:
        mapping = None

    if 'transformer' in parameters['MODEL_TYPE'].lower():
        params_prediction['pos_unk'] = False
        params_prediction['coverage_penalty'] = False

    # Training parameters
    parameters_training = dict()
    if args.online:
        logger.info('Loading models from %s' % str(args.models))
        parameters_training = {  # Traning parameters
            'n_epochs': parameters['MAX_EPOCH'],
            'shuffle': False,
            'loss': parameters.get('LOSS', 'categorical_crossentropy'),
            'batch_size': parameters.get('BATCH_SIZE', 1),
            'homogeneous_batches': False,
            'optimizer': parameters.get('OPTIMIZER', 'SGD'),
            'lr': parameters.get('LR', 0.1),
            'lr_decay': parameters.get('LR_DECAY', None),
            'lr_gamma': parameters.get('LR_GAMMA', 1.),
            'epochs_for_save': -1,
            'verbose': args.verbose,
            'eval_on_sets': parameters.get('EVAL_ON_SETS_KERAS', None),
            'n_parallel_loaders': parameters['PARALLEL_LOADERS'],
            'extra_callbacks': [],  # callbacks,
            'reload_epoch': parameters['RELOAD'],
            'epoch_offset': parameters['RELOAD'],
            'data_augmentation': parameters['DATA_AUGMENTATION'],
            'patience': parameters.get('PATIENCE', 0),
            'metric_check': parameters.get('STOP_METRIC', None),
            'eval_on_epochs': parameters.get('EVAL_EACH_EPOCHS', True),
            'each_n_epochs': parameters.get('EVAL_EACH', 1),
            'start_eval_on_epoch': parameters.get('START_EVAL_ON_EPOCH', 0),
            'additional_training_settings': {
                'k': parameters.get('K', 1),
                'tau': parameters.get('TAU', 1),
                'lambda': parameters.get('LAMBDA', 0.5),
                'c': parameters.get('C', 0.5),
                'd': parameters.get('D', 0.5)
            }
        }
        model_instances = [
            TranslationModel(
                parameters,
                model_type=parameters['MODEL_TYPE'],
                verbose=parameters['VERBOSE'],
                model_name=parameters['MODEL_NAME'] + '_' + str(i),
                vocabularies=dataset.vocabulary,
                store_path=parameters['STORE_PATH'],
                set_optimizer=False) for i in range(len(args.models))
        ]
        models = [
            updateModel(model, path, -1, full_path=True)
            for (model, path) in zip(model_instances, args.models)
        ]
    else:
        models = [loadModel(m, -1, full_path=True) for m in args.models]

    for nmt_model in models:
        nmt_model.setParams(parameters)
        nmt_model.setOptimizer()

    parameters['INPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[
        parameters['INPUTS_IDS_DATASET'][0]]
    parameters['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[
        parameters['OUTPUTS_IDS_DATASET'][0]]

    # Get word2index and index2word dictionaries
    index2word_y = dataset.vocabulary[parameters['OUTPUTS_IDS_DATASET']
                                      [0]]['idx2words']
    word2index_y = dataset.vocabulary[parameters['OUTPUTS_IDS_DATASET']
                                      [0]]['words2idx']
    index2word_x = dataset.vocabulary[parameters['INPUTS_IDS_DATASET']
                                      [0]]['idx2words']
    word2index_x = dataset.vocabulary[parameters['INPUTS_IDS_DATASET']
                                      [0]]['words2idx']

    excluded_words = None
    interactive_beam_searcher = NMTSampler(models,
                                           dataset,
                                           parameters,
                                           params_prediction,
                                           parameters_training,
                                           tokenize_f,
                                           detokenize_function,
                                           tokenize_general,
                                           detokenize_general,
                                           mapping=mapping,
                                           word2index_x=word2index_x,
                                           word2index_y=word2index_y,
                                           index2word_y=index2word_y,
                                           eos_symbol=args.eos_symbol,
                                           excluded_words=excluded_words,
                                           online=args.online,
                                           verbose=args.verbose)

    httpd.sampler = interactive_beam_searcher

    logger.info('Server starting at %s' % str(server_address))
    httpd.serve_forever()
Beispiel #2
0
def main():
    args = parse_args()
    server_address = (args.address, args.port)
    httpd = BaseHTTPServer.HTTPServer(server_address, NMTHandler)
    logger.setLevel(args.logging_level)
    if args.config is not None:
        logger.info('Reading parameters from %s.' % args.config)
        parameters = update_parameters({}, pkl2dict(args.config))
    else:
        logger.info('Reading parameters from config.py.')
        parameters = load_parameters()

    if args.online:
        online_parameters = load_parameters_online(parameters)
        parameters = update_parameters(parameters, online_parameters)

    try:
        for arg in args.changes:
            try:
                k, v = arg.split('=')
            except ValueError:
                print(
                    'Overwritten arguments must have the form key=Value. \n Currently are: %s'
                    % str(args.changes))
                exit(1)
            try:
                parameters[k] = ast.literal_eval(v)
            except ValueError:
                parameters[k] = v
    except ValueError:
        print('Error processing arguments: (', k, ",", v, ")")
        exit(2)

    check_params(parameters)
    if args.verbose:
        logging.info("parameters = " + str(parameters))
    dataset = loadDataset(args.dataset)

    # Dataset backwards compatibility
    bpe_separator = dataset.BPE_separator if hasattr(
        dataset,
        "BPE_separator") and dataset.BPE_separator is not None else '@@'
    # Build BPE tokenizer if necessary
    if 'bpe' in parameters['TOKENIZATION_METHOD'].lower():
        logger.info('Building BPE')
        if not dataset.BPE_built:
            dataset.build_bpe(
                parameters.get(
                    'BPE_CODES_PATH',
                    parameters['DATA_ROOT_PATH'] + '/training_codes.joint'),
                bpe_separator)
    # Build tokenization function
    tokenize_f = eval('dataset.' +
                      parameters.get('TOKENIZATION_METHOD', 'tokenize_bpe'))
    detokenize_function = eval(
        'dataset.' + parameters.get('DETOKENIZATION_METHOD', 'detokenize_bpe'))
    dataset.build_moses_tokenizer(language=parameters['TRG_LAN'])
    dataset.build_moses_detokenizer(language=parameters['TRG_LAN'])
    tokenize_general = dataset.tokenize_moses
    detokenize_general = dataset.detokenize_moses

    parameters_training = dict()
    if args.online:
        logging.info('Loading models from %s' % str(args.models))
        parameters_training = {  # Traning parameters
            'n_epochs': parameters['MAX_EPOCH'],
            'shuffle': False,
            'loss': parameters.get('LOSS', 'categorical_crossentropy'),
            'batch_size': parameters.get('BATCH_SIZE', 1),
            'homogeneous_batches': False,
            'optimizer': parameters.get('OPTIMIZER', 'SGD'),
            'lr': parameters.get('LR', 0.1),
            'lr_decay': parameters.get('LR_DECAY', None),
            'lr_gamma': parameters.get('LR_GAMMA', 1.),
            'epochs_for_save': -1,
            'verbose': args.verbose,
            'eval_on_sets': parameters['EVAL_ON_SETS_KERAS'],
            'n_parallel_loaders': parameters['PARALLEL_LOADERS'],
            'extra_callbacks': [],  # callbacks,
            'reload_epoch': parameters['RELOAD'],
            'epoch_offset': parameters['RELOAD'],
            'data_augmentation': parameters['DATA_AUGMENTATION'],
            'patience': parameters.get('PATIENCE', 0),
            'metric_check': parameters.get('STOP_METRIC', None),
            'eval_on_epochs': parameters.get('EVAL_EACH_EPOCHS', True),
            'each_n_epochs': parameters.get('EVAL_EACH', 1),
            'start_eval_on_epoch': parameters.get('START_EVAL_ON_EPOCH', 0),
            'additional_training_settings': {
                'k': parameters.get('K', 1),
                'tau': parameters.get('TAU', 1),
                'lambda': parameters.get('LAMBDA', 0.5),
                'c': parameters.get('C', 0.5),
                'd': parameters.get('D', 0.5)
            }
        }
        # Load trainable model(s)
        logging.info('Loading models from %s' % str(args.models))
        model_instances = [
            Captioning_Model(
                parameters,
                model_type=parameters['MODEL_TYPE'],
                verbose=parameters['VERBOSE'],
                model_name=parameters['MODEL_NAME'] + '_' + str(i),
                vocabularies=dataset.vocabulary,
                store_path=parameters['STORE_PATH'],
                set_optimizer=False) for i in range(len(args.models))
        ]
        models = [
            updateModel(model, path, -1, full_path=True)
            for (model, path) in zip(model_instances, args.models)
        ]
        for model in models:
            model.setParams(parameters)
            model.setOptimizer()
    else:
        # Otherwise, load regular model(s)
        models = [loadModel(m, -1, full_path=True) for m in args.models]

    parameters['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[
        parameters['OUTPUTS_IDS_DATASET'][0]]

    # Get word2index and index2word dictionaries
    index2word_y = dataset.vocabulary[parameters['OUTPUTS_IDS_DATASET']
                                      [0]]['idx2words']
    word2index_y = dataset.vocabulary[parameters['OUTPUTS_IDS_DATASET']
                                      [0]]['words2idx']
    unk_id = dataset.extra_words['<unk>']

    parameters_prediction = {
        'max_batch_size':
        parameters['BATCH_SIZE'],
        'n_parallel_loaders':
        parameters['PARALLEL_LOADERS'],
        'predict_on_sets': [args.split],
        'beam_size':
        parameters['BEAM_SIZE'],
        'maxlen':
        parameters['MAX_OUTPUT_TEXT_LEN_TEST'],
        'optimized_search':
        parameters['OPTIMIZED_SEARCH'],
        'model_inputs':
        parameters['INPUTS_IDS_MODEL'],
        'model_outputs':
        parameters['OUTPUTS_IDS_MODEL'],
        'dataset_inputs':
        parameters['INPUTS_IDS_DATASET'],
        'dataset_outputs':
        parameters['OUTPUTS_IDS_DATASET'],
        'normalize_probs':
        parameters['NORMALIZE_SAMPLING'],
        'alpha_factor':
        parameters['ALPHA_FACTOR'],
        'normalize':
        parameters.get('NORMALIZATION', False),
        'normalization_type':
        parameters.get('NORMALIZATION_TYPE', None),
        'data_augmentation':
        parameters.get('DATA_AUGMENTATION', False),
        'mean_substraction':
        parameters.get('MEAN_SUBTRACTION', False),
        'wo_da_patch_type':
        parameters.get('WO_DA_PATCH_TYPE', 'whole'),
        'da_patch_type':
        parameters.get('DA_PATCH_TYPE', 'resize_and_rndcrop'),
        'da_enhance_list':
        parameters.get('DA_ENHANCE_LIST', None),
        'pos_unk':
        parameters.get('POS_UNK', None),
        'heuristic':
        parameters.get('HEURISTIC', None),
        'search_pruning':
        parameters.get('SEARCH_PRUNING', False),
        'state_below_index':
        -1,
        'output_text_index':
        0,
        'apply_tokenization':
        parameters.get('APPLY_TOKENIZATION', False),
        'tokenize_f':
        eval('dataset.' +
             parameters.get('TOKENIZATION_METHOD', 'tokenize_none')),
        'apply_detokenization':
        parameters.get('APPLY_DETOKENIZATION', True),
        'detokenize_f':
        eval('dataset.' +
             parameters.get('DETOKENIZATION_METHOD', 'detokenize_none')),
        'coverage_penalty':
        parameters.get('COVERAGE_PENALTY', False),
        'length_penalty':
        parameters.get('LENGTH_PENALTY', False),
        'length_norm_factor':
        parameters.get('LENGTH_NORM_FACTOR', 0.0),
        'coverage_norm_factor':
        parameters.get('COVERAGE_NORM_FACTOR', 0.0),
        'output_max_length_depending_on_x':
        parameters.get('MAXLEN_GIVEN_X', False),
        'output_max_length_depending_on_x_factor':
        parameters.get('MAXLEN_GIVEN_X_FACTOR', 3),
        'output_min_length_depending_on_x':
        parameters.get('MINLEN_GIVEN_X', False),
        'output_min_length_depending_on_x_factor':
        parameters.get('MINLEN_GIVEN_X_FACTOR', 2),
        'attend_on_output':
        parameters.get('ATTEND_ON_OUTPUT', 'transformer'
                       in parameters['MODEL_TYPE'].lower()),
        'n_best_optimizer':
        parameters.get('N_BEST_OPTIMIZER', False)
    }

    excluded_words = None
    interactive_beam_searcher = VideoDescSampler(models,
                                                 dataset,
                                                 parameters,
                                                 parameters_prediction,
                                                 parameters_training,
                                                 tokenize_f,
                                                 detokenize_function,
                                                 tokenize_general,
                                                 detokenize_general,
                                                 split=args.split,
                                                 word2index_y=word2index_y,
                                                 index2word_y=index2word_y,
                                                 eos_symbol=args.eos_symbol,
                                                 excluded_words=excluded_words,
                                                 unk_id=unk_id,
                                                 online=args.online,
                                                 verbose=args.verbose)

    httpd.sampler = interactive_beam_searcher

    logger.info('Server starting at %s' % str(server_address))
    httpd.serve_forever()
    return parser.parse_args()


if __name__ == "__main__":

    args = parse_args()
    # Update parameters
    if args.config is not None:
        logger.info('Reading parameters from %s.' % args.config)
        params = update_parameters({}, pkl2dict(args.config))
    else:
        logger.info('Reading parameters from config.py.')
        params = load_parameters()
    logger.info('Starting active learning with arguments: %str' % str(args))
    online_parameters = load_parameters_online()
    params = update_parameters(params, online_parameters)

    try:
        for arg in args.changes:
            try:
                k, v = arg.split('=')
            except ValueError:
                print 'Overwritten arguments must have the form key=Value. \n Currently are: %s' % str(
                    args.changes)
                exit(1)
            try:
                params[k] = ast.literal_eval(v)
            except ValueError:
                params[k] = v
    except ValueError:
def interactive_simulation():

    args = parse_args()
    # Update parameters
    if args.config is not None:
        logger.info('Reading parameters from %s.' % args.config)
        params = update_parameters({}, pkl2dict(args.config))
    else:
        logger.info('Reading parameters from config.py.')
        params = load_parameters()

    if args.online:
        from config_online import load_parameters as load_parameters_online
        online_parameters = load_parameters_online(params)
        params = update_parameters(params, online_parameters)

    try:
        for arg in args.changes:
            try:
                k, v = arg.split('=')
            except ValueError:
                print(
                    'Overwritten arguments must have the form key=Value. \n Currently are: %s'
                    % str(args.changes))
                exit(1)
            try:
                params[k] = ast.literal_eval(v)
            except ValueError:
                params[k] = v
    except ValueError:
        print('Error processing arguments: (', k, ",", v, ")")
        exit(2)

    check_params(params)
    if args.verbose:
        logging.info("params = " + str(params))
    dataset = loadDataset(args.dataset)
    # dataset = update_dataset_from_file(dataset, args.source, params, splits=args.splits, remove_outputs=True)
    # Dataset backwards compatibility
    bpe_separator = dataset.BPE_separator if hasattr(
        dataset,
        "BPE_separator") and dataset.BPE_separator is not None else u'@@'
    # Set tokenization method
    params[
        'TOKENIZATION_METHOD'] = 'tokenize_bpe' if args.tokenize_bpe else params.get(
            'TOKENIZATION_METHOD', 'tokenize_none')
    # Build BPE tokenizer if necessary
    if 'bpe' in params['TOKENIZATION_METHOD'].lower():
        logger.info('Building BPE')
        if not dataset.BPE_built:
            dataset.build_bpe(params.get(
                'BPE_CODES_PATH',
                params['DATA_ROOT_PATH'] + '/training_codes.joint'),
                              separator=bpe_separator)
    # Build tokenization function
    tokenize_f = eval('dataset.' +
                      params.get('TOKENIZATION_METHOD', 'tokenize_none'))

    if args.online:
        # Traning params
        params_training = {  # Traning params
            'n_epochs': params['MAX_EPOCH'],
            'shuffle': False,
            'loss': params.get('LOSS', 'categorical_crossentropy'),
            'batch_size': params.get('BATCH_SIZE', 1),
            'homogeneous_batches': False,
            'optimizer': params.get('OPTIMIZER', 'SGD'),
            'lr': params.get('LR', 0.1),
            'lr_decay': params.get('LR_DECAY', None),
            'lr_gamma': params.get('LR_GAMMA', 1.),
            'epochs_for_save': -1,
            'verbose': args.verbose,
            'eval_on_sets': params['EVAL_ON_SETS_KERAS'],
            'n_parallel_loaders': params['PARALLEL_LOADERS'],
            'extra_callbacks': [],  # callbacks,
            'reload_epoch': 0,
            'epoch_offset': 0,
            'data_augmentation': params['DATA_AUGMENTATION'],
            'patience': params.get('PATIENCE', 0),
            'metric_check': params.get('STOP_METRIC', None),
            'eval_on_epochs': params.get('EVAL_EACH_EPOCHS', True),
            'each_n_epochs': params.get('EVAL_EACH', 1),
            'start_eval_on_epoch': params.get('START_EVAL_ON_EPOCH', 0),
            'additional_training_settings': {
                'k': params.get('K', 1),
                'tau': params.get('TAU', 1),
                'lambda': params.get('LAMBDA', 0.5),
                'c': params.get('C', 0.5),
                'd': params.get('D', 0.5)
            }
        }
    else:
        params_training = dict()

    params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[
        params['OUTPUTS_IDS_DATASET'][0]]
    logger.info("<<< Using an ensemble of %d models >>>" % len(args.models))
    if args.online:
        # Load trainable model(s)
        logging.info('Loading models from %s' % str(args.models))
        model_instances = [
            Captioning_Model(params,
                             model_type=params['MODEL_TYPE'],
                             verbose=params['VERBOSE'],
                             model_name=params['MODEL_NAME'] + '_' + str(i),
                             vocabularies=dataset.vocabulary,
                             store_path=params['STORE_PATH'],
                             clear_dirs=False,
                             set_optimizer=False)
            for i in range(len(args.models))
        ]
        models = [
            updateModel(model, path, -1, full_path=True)
            for (model, path) in zip(model_instances, args.models)
        ]

        # Set additional inputs to models if using a custom loss function
        params['USE_CUSTOM_LOSS'] = True if 'PAS' in params[
            'OPTIMIZER'] else False
        if params['N_BEST_OPTIMIZER']:
            logging.info('Using N-best optimizer')

        models = build_online_models(models, params)
        online_trainer = OnlineTrainer(models,
                                       dataset,
                                       None,
                                       None,
                                       params_training,
                                       verbose=args.verbose)
    else:
        # Otherwise, load regular model(s)
        models = [loadModel(m, -1, full_path=True) for m in args.models]

    # Load text files
    logger.info("<<< Storing corrected hypotheses into: %s >>>" %
                str(args.dest))
    ftrans = open(args.dest, 'w')
    ftrans.close()

    # Do we want to save the original sentences?
    if args.original_dest is not None:
        logger.info("<<< Storing original hypotheses into: %s >>>" %
                    str(args.original_dest))
        ftrans_ori = open(args.original_dest, 'w')
        ftrans_ori.close()

    if args.references is not None:
        ftrg = codecs.open(args.references, 'r', encoding='utf-8'
                           )  # File with post-edited (or reference) sentences.
        all_references = ftrg.read().split('\n')
        if all_references[-1] == u'':
            all_references = all_references[:-1]

    # Get word2index and index2word dictionaries
    index2word_y = dataset.vocabulary[params['OUTPUTS_IDS_DATASET']
                                      [0]]['idx2words']
    word2index_y = dataset.vocabulary[params['OUTPUTS_IDS_DATASET']
                                      [0]]['words2idx']
    unk_id = dataset.extra_words['<unk>']

    # Initialize counters
    total_errors = 0
    total_words = 0
    total_chars = 0
    total_mouse_actions = 0
    try:
        for s in args.splits:
            # Apply model predictions
            params_prediction = {
                'max_batch_size':
                params['BATCH_SIZE'],
                'n_parallel_loaders':
                params['PARALLEL_LOADERS'],
                'predict_on_sets': [s],
                'beam_size':
                params['BEAM_SIZE'],
                'maxlen':
                params['MAX_OUTPUT_TEXT_LEN_TEST'],
                'optimized_search':
                params['OPTIMIZED_SEARCH'],
                'model_inputs':
                params['INPUTS_IDS_MODEL'],
                'model_outputs':
                params['OUTPUTS_IDS_MODEL'],
                'dataset_inputs':
                params['INPUTS_IDS_DATASET'],
                'dataset_outputs':
                params['OUTPUTS_IDS_DATASET'],
                'normalize_probs':
                params.get('NORMALIZE_SAMPLING', False),
                'alpha_factor':
                params.get('ALPHA_FACTOR', 1.0),
                'normalize':
                params.get('NORMALIZATION', False),
                'normalization_type':
                params.get('NORMALIZATION_TYPE', None),
                'data_augmentation':
                params.get('DATA_AUGMENTATION', False),
                'mean_substraction':
                params.get('MEAN_SUBTRACTION', False),
                'wo_da_patch_type':
                params.get('WO_DA_PATCH_TYPE', 'whole'),
                'da_patch_type':
                params.get('DA_PATCH_TYPE', 'resize_and_rndcrop'),
                'da_enhance_list':
                params.get('DA_ENHANCE_LIST', None),
                'heuristic':
                params.get('HEURISTIC', None),
                'search_pruning':
                params.get('SEARCH_PRUNING', False),
                'state_below_index':
                -1,
                'output_text_index':
                0,
                'apply_tokenization':
                params.get('APPLY_TOKENIZATION', False),
                'tokenize_f':
                eval('dataset.' +
                     params.get('TOKENIZATION_METHOD', 'tokenize_none')),
                'apply_detokenization':
                params.get('APPLY_DETOKENIZATION', True),
                'detokenize_f':
                eval('dataset.' +
                     params.get('DETOKENIZATION_METHOD', 'detokenize_none')),
                'coverage_penalty':
                params.get('COVERAGE_PENALTY', False),
                'length_penalty':
                params.get('LENGTH_PENALTY', False),
                'length_norm_factor':
                params.get('LENGTH_NORM_FACTOR', 0.0),
                'coverage_norm_factor':
                params.get('COVERAGE_NORM_FACTOR', 0.0),
                'pos_unk':
                False,
                'state_below_maxlen':
                -1 if params.get('PAD_ON_BATCH', True) else params.get(
                    'MAX_OUTPUT_TEXT_LEN_TEST', 50),
                'output_max_length_depending_on_x':
                params.get('MAXLEN_GIVEN_X', False),
                'output_max_length_depending_on_x_factor':
                params.get('MAXLEN_GIVEN_X_FACTOR', 3),
                'output_min_length_depending_on_x':
                params.get('MINLEN_GIVEN_X', False),
                'output_min_length_depending_on_x_factor':
                params.get('MINLEN_GIVEN_X_FACTOR', 2),
                'attend_on_output':
                params.get('ATTEND_ON_OUTPUT', 'transformer'
                           in params['MODEL_TYPE'].lower()),
                'n_best_optimizer':
                params.get('N_BEST_OPTIMIZER', False)
            }

            # Build interactive sampler
            interactive_beam_searcher = InteractiveBeamSearchSampler(
                models,
                dataset,
                params_prediction,
                excluded_words=None,
                verbose=args.verbose)
            start_time = time.time()

            if args.verbose:
                logging.info("Params prediction = " + str(params_prediction))
                if args.online:
                    logging.info("Params training = " + str(params_training))
            n_samples = getattr(dataset, 'len_' + s)
            if args.references is None:
                all_references = dataset.extra_variables[s][
                    params['OUTPUTS_IDS_DATASET'][0]]

            # Start to translate the source file interactively
            for n_sample in range(n_samples):
                errors_sentence = 0
                mouse_actions_sentence = 0
                hypothesis_number = 0
                # Load data from dataset
                current_input = dataset.getX_FromIndices(
                    s, [n_sample],
                    normalization_type=params_prediction.get(
                        'normalization_type'),
                    normalization=params_prediction.get('normalize', False),
                    dataAugmentation=params_prediction.get(
                        'data_augmentation', False),
                    wo_da_patch_type=params_prediction.get(
                        'wo_da_patch_type', 'whole'),
                    da_patch_type=params_prediction.get(
                        'da_patch_type', 'resize_and_rndcrop'),
                    da_enhance_list=params_prediction.get(
                        'da_enhance_list', None))[0][0]

                # Load references
                references = all_references[n_sample]

                tokenized_references = list(map(
                    tokenize_f,
                    references)) if args.tokenize_references else references

                # Get reference as desired by the user, i.e. detokenized if necessary
                reference = list(map(params_prediction['detokenize_f'], tokenized_references)) if \
                    args.detokenize_bpe else tokenized_references

                # Detokenize line for nicer logging :)
                logger.debug(u'\n\nProcessing sample %d' % (n_sample + 1))
                logger.debug(u'Target: %s' % reference)

                # 1. Get a first hypothesis
                trans_indices, costs, alphas = interactive_beam_searcher.sample_beam_search_interactive(
                    current_input)

                # 1.2 Decode hypothesis
                hypothesis = decode_predictions_beam_search([trans_indices],
                                                            index2word_y,
                                                            pad_sequences=True,
                                                            verbose=0)[0]
                # 1.3 Store result (optional)
                hypothesis = params_prediction['detokenize_f'](hypothesis) \
                    if params_prediction.get('apply_detokenization', False) else hypothesis
                if args.original_dest is not None:
                    if params['SAMPLING_SAVE_MODE'] == 'list':
                        list2file(args.original_dest, [hypothesis],
                                  permission='a')
                    else:
                        raise Exception(
                            'Only "list" is allowed in "SAMPLING_SAVE_MODE"')
                logger.debug(u'Hypo_%d: %s' % (hypothesis_number, hypothesis))

                # 2.0 Interactive translation
                if hypothesis in tokenized_references:
                    # 2.1 If the sentence is correct, we  validate it
                    pass
                else:
                    # 2.2 Wrong hypothesis -> Interactively translate the sentence
                    correct_hypothesis = False
                    last_correct_pos = 0
                    while not correct_hypothesis:
                        # 2.2.1 Empty data structures for the next sentence
                        fixed_words_user = OrderedDict()
                        unk_words_dict = OrderedDict()
                        isle_indices = []
                        unks_in_isles = []

                        if args.prefix:
                            # 2.2.2 Compute longest common character prefix (LCCP)
                            reference_idx, next_correction_pos, validated_prefix = common_prefixes(
                                hypothesis, tokenized_references)
                        else:
                            # 2.2.2 Compute common character segments
                            #TODO
                            next_correction_pos, validated_prefix, validated_segments = common_segments(
                                hypothesis, reference)
                        reference = tokenized_references[reference_idx]
                        if next_correction_pos == len(reference):
                            correct_hypothesis = True
                            break
                        # 2.2.3 Get next correction by checking against the reference
                        next_correction = reference[next_correction_pos]

                        # 2.2.4 Tokenize the prefix properly (possibly applying BPE)
                        tokenized_validated_prefix = tokenize_f(
                            validated_prefix + next_correction)

                        # 2.2.5 Validate words
                        for pos, word in enumerate(
                                tokenized_validated_prefix.split()):
                            fixed_words_user[pos] = word2index_y.get(
                                word, unk_id)
                            if word2index_y.get(word) is None:
                                unk_words_dict[pos] = word

                        # 2.2.6 Constrain search for the last word
                        last_user_word_pos = list(fixed_words_user.keys())[-1]
                        if next_correction != u' ':
                            last_user_word = tokenized_validated_prefix.split(
                            )[-1]
                            filtered_idx2word = dict(
                                (word2index_y[candidate_word], candidate_word)
                                for candidate_word in word2index_y
                                if candidate_word[:len(last_user_word)] ==
                                last_user_word)
                            if filtered_idx2word != dict():
                                del fixed_words_user[last_user_word_pos]
                                if last_user_word_pos in unk_words_dict.keys():
                                    del unk_words_dict[last_user_word_pos]
                        else:
                            filtered_idx2word = dict()

                        logger.debug(u'"%s" to character %d.' %
                                     (next_correction, next_correction_pos))

                        # 2.2.7 Generate a hypothesis compatible with the feedback provided by the user
                        hypothesis = generate_constrained_hypothesis(
                            interactive_beam_searcher, current_input,
                            fixed_words_user, params_prediction, args,
                            isle_indices, filtered_idx2word, index2word_y,
                            None, None, None, unk_words_dict.keys(),
                            unk_words_dict.values(), unks_in_isles)
                        hypothesis_number += 1
                        hypothesis = u' '.join(
                            hypothesis)  # Hypothesis is unicode
                        hypothesis = params_prediction['detokenize_f'](hypothesis) \
                            if args.detokenize_bpe else hypothesis
                        logger.debug(u'Target: %s' % reference)
                        logger.debug(u"Hypo_%d: %s" %
                                     (hypothesis_number, hypothesis))
                        # 2.2.8 Add a keystroke
                        errors_sentence += 1
                        # 2.2.9 Add a mouse action if we moved the pointer
                        if next_correction_pos - last_correct_pos > 1:
                            mouse_actions_sentence += 1
                        last_correct_pos = next_correction_pos

                    # 2.3 Final check: The reference is a subset of the hypothesis: Cut the hypothesis
                    if len(reference) < len(hypothesis):
                        hypothesis = hypothesis[:len(reference)]
                        errors_sentence += 1
                        logger.debug(u"Cutting hypothesis")

                # 2.4 Security assertion
                assert hypothesis in references, "Error: The final hypothesis does not match with the reference! \n" \
                                                "\t Split: %s \n" \
                                                "\t Sentence: %d \n" \
                                                "\t Hypothesis: %s\n" \
                                                "\t Reference: %s" % (s, n_sample + 1,
                                                                      hypothesis,
                                                                      reference)
                # 3. Update user effort counters
                mouse_actions_sentence += 1  # This +1 is the validation action
                chars_sentence = len(hypothesis)
                total_errors += errors_sentence
                total_words += len(hypothesis.split())
                total_chars += chars_sentence
                total_mouse_actions += mouse_actions_sentence

                # 3.1 Log some info
                logger.debug(u"Final hypotesis: %s" % hypothesis)
                logger.debug(
                    u"%d errors. "
                    u"Sentence WSR: %4f. "
                    u"Sentence mouse strokes: %d "
                    u"Sentence MAR: %4f. "
                    u"Sentence MAR_c: %4f. "
                    u"Sentence KSMR: %4f. "
                    u"Accumulated (should only be considered for debugging purposes!) "
                    u"WSR: %4f. "
                    u"MAR: %4f. "
                    u"MAR_c: %4f. "
                    u"KSMR: %4f.\n\n\n\n" %
                    (errors_sentence, float(errors_sentence) / len(hypothesis),
                     mouse_actions_sentence,
                     float(mouse_actions_sentence) / len(hypothesis),
                     float(mouse_actions_sentence) / chars_sentence,
                     float(errors_sentence + mouse_actions_sentence) /
                     chars_sentence, float(total_errors) / total_words,
                     float(total_mouse_actions) / total_words,
                     float(total_mouse_actions) / total_chars,
                     float(total_errors + total_mouse_actions) / total_chars))
                # 4. If we are performing OL after each correct sample:
                if args.online:
                    # 4.1 Compute model inputs
                    # 4.1.1 Source text -> Already computed (used for the INMT process)
                    # 4.1.2 State below
                    state_below = dataset.loadText(
                        [reference],
                        vocabularies=dataset.vocabulary[
                            params['OUTPUTS_IDS_DATASET'][0]],
                        max_len=params['MAX_OUTPUT_TEXT_LEN_TEST'],
                        offset=1,
                        fill=dataset.fill_text[params['INPUTS_IDS_DATASET']
                                               [-1]],
                        pad_on_batch=dataset.pad_on_batch[
                            params['INPUTS_IDS_DATASET'][-1]],
                        words_so_far=False,
                        loading_X=True)[0]

                    # 4.1.3 Ground truth sample -> Interactively translated sentence
                    trg_seq = dataset.loadTextOneHot(
                        [reference],
                        vocabularies=dataset.vocabulary[
                            params['OUTPUTS_IDS_DATASET'][0]],
                        vocabulary_len=dataset.vocabulary_len[
                            params['OUTPUTS_IDS_DATASET'][0]],
                        max_len=params['MAX_OUTPUT_TEXT_LEN_TEST'],
                        offset=0,
                        fill=dataset.fill_text[params['OUTPUTS_IDS_DATASET']
                                               [0]],
                        pad_on_batch=dataset.pad_on_batch[
                            params['OUTPUTS_IDS_DATASET'][0]],
                        words_so_far=False,
                        sample_weights=params['SAMPLE_WEIGHTS'],
                        loading_X=False)
                    # 4.2 Train online!
                    online_trainer.train_online(
                        [np.asarray([current_input]), state_below],
                        trg_seq,
                        trg_words=[reference])
                # 5 Write correct sentences into a file
                list2file(args.dest, [hypothesis], permission='a')

                if (n_sample + 1) % 50 == 0:
                    logger.info(u"%d sentences processed" % (n_sample + 1))
                    logger.info(u"Current speed is {} per sentence".format(
                        (time.time() - start_time) / (n_sample + 1)))
                    logger.info(u"Current WSR is: %f" %
                                (float(total_errors) / total_words))
                    logger.info(u"Current MAR is: %f" %
                                (float(total_mouse_actions) / total_words))
                    logger.info(u"Current MAR_c is: %f" %
                                (float(total_mouse_actions) / total_chars))
                    logger.info(u"Current KSMR is: %f" %
                                (float(total_errors + total_mouse_actions) /
                                 total_chars))
        # 6. Final!
        # 6.1 Log some information
        print(u"Total number of errors:", total_errors)
        print(u"Total number selections", total_mouse_actions)
        print(u"WSR: %f" % (float(total_errors) / total_words))
        print(u"MAR: %f" % (float(total_mouse_actions) / total_words))
        print(u"MAR_c: %f" % (float(total_mouse_actions) / total_chars))
        print(u"KSMR: %f" %
              (float(total_errors + total_mouse_actions) / total_chars))

    except KeyboardInterrupt:
        print(u'Interrupted!')
        print(u"Total number of corrections (up to now):", total_errors)
        print(u"WSR: %f" % (float(total_errors) / total_words))
        print(u"MAR: %f" % (float(total_mouse_actions) / total_words))
        print(u"MAR_c: %f" % (float(total_mouse_actions) / total_chars))
        print(u"KSMR: %f" %
              (float(total_errors + total_mouse_actions) / total_chars))