def test_confignet_finetune(test_asset_dir, model_dir, resolution):
    model_path = os.path.join(model_dir, "confignet_%d" % resolution,
                              "model.json")
    model = ConfigNet.load(model_path)

    normalized_image = get_normalized_test_image(test_asset_dir,
                                                 (resolution, resolution))

    with tf.device('/cpu:0'):
        embedding, rotation = model.fine_tune_on_img(
            normalized_image[np.newaxis], n_iters=1)
        decoded_image = model.generate_images(embedding, rotation)

    reference_value_file = os.path.join(
        test_asset_dir, "confignet_finetune_ref_%d.npz" % resolution)
    # set to True to save results as reference
    save_reference = False
    if save_reference:
        np.savez(reference_value_file,
                 embedding=embedding,
                 rotation=rotation,
                 decoded_image=decoded_image)

    reference_vals = np.load(reference_value_file)
    assert np.allclose(embedding, reference_vals["embedding"])
    assert np.allclose(rotation, reference_vals["rotation"])
    assert np.allclose(decoded_image, reference_vals["decoded_image"])
def test_confignet_basic(test_asset_dir, model_dir, resolution):
    model_path = os.path.join(model_dir, "confignet_%d" % resolution,
                              "model.json")
    model = ConfigNet.load(model_path)

    with tf.device('/cpu:0'):
        normalized_image = get_normalized_test_image(test_asset_dir,
                                                     (resolution, resolution))
        embedding, rotation = model.encode_images(normalized_image[np.newaxis])
        decoded_image = model.generate_images(embedding, rotation)

        n_blendshapes = model.config["facemodel_inputs"]["blendshape_values"][
            0]

        neutral_expression = np.zeros((1, n_blendshapes), np.float32)
        modified_embedding = model.set_facemodel_param_in_latents(
            embedding, "blendshape_values", neutral_expression)
        decoded_image_modified = model.generate_images(embedding, rotation)

    reference_value_file = os.path.join(
        test_asset_dir, "confignet_basic_ref_%d.npz" % resolution)
    # set to True to save results as reference
    save_reference = False
    if save_reference:
        np.savez(reference_value_file,
                 embedding=embedding,
                 rotation=rotation,
                 decoded_image=decoded_image,
                 modified_embedding=modified_embedding,
                 decoded_image_modified=decoded_image_modified)

    reference_vals = np.load(reference_value_file)
    assert np.allclose(embedding, reference_vals["embedding"])
    assert np.allclose(rotation, reference_vals["rotation"])
    assert np.allclose(decoded_image, reference_vals["decoded_image"])
    assert np.allclose(modified_embedding,
                       reference_vals["modified_embedding"])
    assert np.allclose(decoded_image_modified,
                       reference_vals["decoded_image_modified"])
def test_latent_gan(model_dir, test_asset_dir, resolution):
    latentgan_model_path = os.path.join(model_dir, "latentgan_%d" % resolution,
                                        "model.json")
    confignet_model_path = os.path.join(model_dir, "confignet_%d" % resolution,
                                        "model.json")

    latentgan = LatentGAN.load(latentgan_model_path)
    confignet = ConfigNet.load(confignet_model_path)

    np.random.seed(0)
    with tf.device('/cpu:0'):
        confignet_latents = latentgan.generate_latents(1)
        generated_imgs = confignet.generate_images(confignet_latents,
                                                   np.zeros((1, 3)))

    reference_value_file = os.path.join(test_asset_dir,
                                        "latentgan_ref_%d.npz" % resolution)
    # set to True to save results as reference
    save_reference = False
    if save_reference:
        np.savez(reference_value_file, generated_imgs=generated_imgs)

    reference_vals = np.load(reference_value_file)
    assert np.allclose(generated_imgs, reference_vals["generated_imgs"])
Beispiel #4
0
def run(args):
    args = parse_args(args)
    if args.image_path is not None:
        input_images = process_image(args.image_path, args.resolution)
        latentgan_model = None
    else:
        input_images = None
        print(
            "WARNING: no input image directory specified, embeddings will be sampled using Laten GAN"
        )
        latentgan_model = LatentGAN.load(args.latent_gan_model_path)
    confignet_model = ConfigNet.load(args.confignet_model_path)

    #basic_ui = BasicUI(confignet_model)

    # Sample latent embeddings from input images if available and if not sample from Latent GAN
    current_embedding_unmodified, current_rotation, orig_images = get_new_embeddings(
        input_images, latentgan_model, confignet_model)
    # Set next embedding value for rendering
    if args.enable_sr == 1:
        modelSR = generator()
        modelSR.load_weights('evaluation/weights/srgan/gan_generator.h5')

    yaw_min_angle = -args.max_angle
    pitch_min_angle = -args.max_angle
    yaw_max_angle = args.max_angle
    pitch_max_angle = args.max_angle
    delta_angle = 5

    rotation_offset = np.zeros((1, 3))

    eye_rotation_offset = np.zeros((1, 3))

    facemodel_param_names = list(
        confignet_model.config["facemodel_inputs"].keys())
    # remove eye rotation as in the demo it is controlled separately
    eye_rotation_param_idx = facemodel_param_names.index(
        "bone_rotations:left_eye")
    facemodel_param_names.pop(eye_rotation_param_idx)

    render_input_interp_0 = current_embedding_unmodified
    render_input_interp_1 = current_embedding_unmodified

    interpolation_coef = 0
    if not os.path.exists(dataset_directory):
        os.makedirs(dataset_directory)
    # This interpolates between the previous and next set embeddings
    current_renderer_input = render_input_interp_0 * (
        1 - interpolation_coef) + render_input_interp_1 * interpolation_coef
    # Set eye gaze direction as controlled by the user
    current_renderer_input = set_gaze_direction_in_embedding(
        current_renderer_input, eye_rotation_offset, confignet_model)

    # all angles
    #image = Image.open(args.image_path)
    #print(np.array(image))
    #return
    i = 1
    print('All angles')
    for yaw in range(yaw_min_angle, yaw_max_angle + 1, delta_angle):
        for pitch in range(pitch_min_angle, pitch_max_angle + 1, delta_angle):
            rotation_offset[0, 0] = to_rad(yaw)
            rotation_offset[0, 1] = to_rad(pitch)
            generated_imgs = confignet_model.generate_images(
                current_renderer_input, current_rotation + rotation_offset)
            if args.enable_sr == 1:
                img = cv2.resize(generated_imgs[0], (256, 256))
                sr_img = resolve_single(modelSR, img)
                cv2.imwrite(dataset_directory + '/%d_%d.png' % (yaw, pitch),
                            np.array(sr_img))
            else:
                img = cv2.resize(generated_imgs[0], (1024, 1024))
                cv2.imwrite(dataset_directory + '/%d_%d.png' % (yaw, pitch),
                            img)
            print(i)
            i += 1

    #all random
    # 100 картинок со случайными поворотами от -20 до 20, поворотами глаз, выражений лица
    print('All random')
    current_attribute_name = facemodel_param_names[1]  #blendshape_values
    frame_embedding = render_input_interp_0 * (
        1 - interpolation_coef) + render_input_interp_1 * interpolation_coef
    for i in range(100):
        eye_rotation_offset[0, 2] = to_rad(np.random.randint(-40, 40))
        eye_rotation_offset[0, 0] = to_rad(np.random.randint(-40, 40))
        rotation_offset[0, 0] = to_rad(np.random.randint(-20, 20))
        rotation_offset[0, 1] = to_rad(np.random.randint(-20, 20))
        frame_embedding = set_gaze_direction_in_embedding(
            frame_embedding, eye_rotation_offset, confignet_model)
        new_embedding_value = get_embedding_with_new_attribute_value(
            current_attribute_name, frame_embedding, confignet_model)

        generated_imgs = confignet_model.generate_images(
            new_embedding_value, current_rotation + rotation_offset)

        if args.enable_sr == 1:
            img = cv2.resize(generated_imgs[0], (256, 256))
            sr_img = resolve_single(modelSR, img)
            cv2.imwrite(dataset_directory + '/random_%d.png' % (i),
                        np.array(sr_img))
        else:
            img = cv2.resize(generated_imgs[0], (1024, 1024))
            cv2.imwrite(dataset_directory + '/random_%d.png' % (i), img)
        print(i)
Beispiel #5
0
def run(args):
    print_intro()
    print_instructions()

    args = parse_args(args)
    if args.image_path is not None:
        input_images = process_images(args.image_path, args.resolution)
        latentgan_model = None
    else:
        input_images = None
        print(
            "WARNING: no input image directory specified, embeddings will be sampled using Laten GAN"
        )
        latentgan_model = LatentGAN.load(args.latent_gan_model_path)
    confignet_model = ConfigNet.load(args.confignet_model_path)

    basic_ui = BasicUI(confignet_model)

    # Sample latent embeddings from input images if available and if not sample from Latent GAN
    current_embedding_unmodified, current_rotation, orig_images = get_new_embeddings(
        args, input_images, latentgan_model, confignet_model)
    # Set next embedding value for rendering
    basic_ui.set_next_embeddings(current_embedding_unmodified)

    while not basic_ui.exit:
        # This interpolates between the previous and next set embeddings
        current_renderer_input = basic_ui.get_current_frame_embeddings()
        # Set eye gaze direction as controlled by the user
        current_renderer_input = set_gaze_direction_in_embedding(
            current_renderer_input, basic_ui.eye_rotation_offset,
            confignet_model)

        generated_imgs = confignet_model.generate_images(
            current_renderer_input,
            current_rotation + basic_ui.rotation_offset)

        white_strip = np.full(
            (generated_imgs.shape[0], generated_imgs.shape[1], 20, 3), 255,
            np.uint8)
        visualization_imgs = np.dstack(
            (orig_images, generated_imgs, white_strip))

        image_matrix = build_image_matrix(visualization_imgs, args.n_rows,
                                          args.n_cols)

        basic_ui.perform_per_frame_actions()

        if not args.test_mode:
            key = cv2.imshow("img", image_matrix)
        key = cv2.waitKey(1)

        key = basic_ui.drive_ui(key, args.test_mode)

        if key == ord(" ") or args.test_mode:
            current_embedding_unmodified, current_rotation, orig_images = get_new_embeddings(
                args, input_images, latentgan_model, confignet_model)
            basic_ui.set_next_embeddings(current_embedding_unmodified)
        if key == ord("v") or args.test_mode:
            basic_ui.set_next_embeddings(current_embedding_unmodified)
        if key == ord("x") or args.test_mode:
            current_attribute_name = basic_ui.facemodel_param_names[
                basic_ui.controlled_param_idx]
            new_embedding_value = get_embedding_with_new_attribute_value(
                current_attribute_name,
                basic_ui.get_current_frame_embeddings(), confignet_model)
            basic_ui.set_next_embeddings(new_embedding_value)
        if key == ord("b") or args.test_mode:
            if input_images is None or len(input_images) != 1:
                print(
                    "For one-shot learning to work you need to specify a single input image path"
                )
                continue
            if args.test_mode:
                n_fine_tuning_iters = 1
            else:
                n_fine_tuning_iters = 50
            print(
                "Fine tuning generator on single image, this might take a minute or two"
            )
            current_embedding_unmodified, current_rotation = confignet_model.fine_tune_on_img(
                input_images[0], n_fine_tuning_iters)
            basic_ui.set_next_embeddings(current_embedding_unmodified)
        if key == ord("h") or args.test_mode:
            print_intro()
            basic_ui.print_instructions()
            print_instructions()

        if args.test_mode:
            break