Beispiel #1
0
import numpy as np
import numpy as np
import matplotlib.pylab as plt
import scipy.signal as signal
from analysis import smooth
from console import utils as ndaq

# Get data and items
data = ndaq.get_data()
items = ndaq.get_items()
dt = items[0].attrs['dt']
dt = .04

# Get peaks, decays and peak times
decayTimes = []
for trace in data:
    peak = trace.min()
    decay = peak*0.37
    peakTime = trace.argmin()
    decayTrace = trace[peakTime:]
    idx = decayTrace<decay
    decayTime = np.sum(idx)*dt
    #plt.plot(decayTrace[idx])
    print decayTime
    decayTimes.append(decayTime)
#plt.show()

ndaq.store_data(decayTimes, name='decay_times')

Beispiel #2
0
# temp script to tranform velocity traces into something useful

import numpy as np
from analysis import smooth
from console import utils as ndaq

# Parameters
posThs = 1.66
negThs = 1.62
final_smth_window = 100

# Get data and items
data = ndaq.get_data()
item = ndaq.get_items()
dt = item[0].attrs['dt']

# Smooth
data = smooth.smooth(data, window_len=4, window='hanning')

# Threshold detection functions
compPositive = lambda a, b: a > b
compNegative = lambda a, b: a < b

# Go through data
i = 0
eStart, eEnd = [], []
while i < len(data):
    if compPositive(data[i], posThs):
        eStart.append(i)
        while i < len(data) and compPositive(data[i], posThs - 0.02):
            i += 1
Beispiel #3
0
import numpy as np
import matplotlib.pylab as plt
import scipy.signal as signal
from analysis import smooth
from console import utils as ndaq

# Add single PSCs at a defined frequency and number

# Get data and items
data = ndaq.get_data()
items = ndaq.get_items()
dt = items[0].attrs['dt']
dt = 0.04

# Lag traces and add them
number = 20
freq = 20.
isi = 1 / freq * 1000  # in ms

result = []
for n in range(number):
    trace = data
    npad = int(n * isi / dt)
    laggedTrace = np.pad(trace, (npad, 0), 'constant', constant_values=(0, 0))
    #if n>0: laggedTrace = laggedTrace[:-npad]
    result.append(laggedTrace)

maxshape = result[len(result) - 1].shape
alignedTraces = []
c = 0
for trace in result:
Beispiel #4
0
# temp script to tranform velocity traces into something useful

import numpy as np
from analysis import smooth
from console import utils as ndaq

# Parameters
posThs = 1.66
negThs = 1.62
final_smth_window = 100

# Get data and items
data = ndaq.get_data()
item = ndaq.get_items()
dt = item[0].attrs['dt']

# Smooth
data = smooth.smooth(data, window_len=4, window='hanning')

# Threshold detection functions
compPositive = lambda a, b: a > b
compNegative = lambda a, b: a < b

# Go through data
i = 0
eStart, eEnd = [], []
while i<len(data):
    if compPositive(data[i], posThs):
        eStart.append(i)
        while i<len(data) and compPositive(data[i], posThs-0.02):
            i+=1