def plot_size_graph(response_size, size_stdev, action=None, tolerance=0):
    plt.clf()

    full_length = 100.0
    step = 0.1
    main_step = full_length / len(response_size)
    x = np.arange(0, full_length, main_step)

    # One main step less because levels go on sticks, not
    # on intervals.
    xmax = full_length - main_step + step
    ymax = constants.n_labels

    plt.errorbar(x,
                 response_size,
                 fmt='g-D',
                 yerr=size_stdev,
                 label=_('Average number of responses'))
    plt.xlim(0, xmax)
    # plt.ylim(0, ymax)
    plt.xticks(x, constants.memory_sizes)
    plt.yticks(np.arange(0, ymax + 1, 1), range(constants.n_labels + 1))

    plt.xlabel(_('Range Quantization Levels'))
    plt.ylabel(_('Size'))
    plt.legend(loc=1)
    plt.grid(True)

    graph_filename = constants.picture_filename('graph_size_MEAN' +
                                                _('-english'),
                                                action,
                                                tolerance=tolerance)
    plt.savefig(graph_filename, dpi=600)
def plot_behs_graph(no_response,
                    no_correct,
                    no_chosen,
                    correct,
                    action=None,
                    tolerance=0):

    for i in range(len(no_response)):
        total = (no_response[i] + no_correct[i] + no_chosen[i] +
                 correct[i]) / 100.0
        no_response[i] /= total
        no_correct[i] /= total
        no_chosen[i] /= total
        correct[i] /= total

    plt.clf()

    full_length = 100.0
    step = 0.1
    main_step = full_length / len(constants.memory_sizes)
    x = np.arange(0.0, full_length, main_step)

    # One main step less because levels go on sticks, not
    # on intervals.
    xmax = full_length - main_step + step
    ymax = full_length
    width = 5  # the width of the bars: can also be len(x) sequence

    plt.bar(x, correct, width, label=_('Correct response chosen'))
    cumm = np.array(correct)
    plt.bar(x,
            no_chosen,
            width,
            bottom=cumm,
            label=_('Correct response not chosen'))
    cumm += np.array(no_chosen)
    plt.bar(x, no_correct, width, bottom=cumm, label=_('No correct response'))
    cumm += np.array(no_correct)
    plt.bar(x, no_response, width, bottom=cumm, label=_('No responses'))

    plt.xlim(-width, full_length + width)
    plt.ylim(0.0, full_length)
    plt.xticks(x, constants.memory_sizes)

    plt.xlabel(_('Range Quantization Levels'))
    plt.ylabel(_('Labels'))

    plt.legend(loc=0)
    plt.grid(axis='y')

    graph_filename = constants.picture_filename('graph_behaviours_MEAN' +
                                                _('-english'),
                                                action,
                                                tolerance=tolerance)
    plt.savefig(graph_filename, dpi=600)
Beispiel #3
0
def plot_pre_graph (pre_mean, rec_mean, ent_mean, pre_std, rec_std, ent_std, \
    tag = '', xlabels = constants.memory_sizes, xtitle = None, \
        ytitle = None, action=None, occlusion = None, bars_type = None, tolerance = 0):

    plt.clf()
    plt.figure(figsize=(6.4, 4.8))

    full_length = 100.0
    step = 0.1
    main_step = full_length / len(xlabels)
    x = np.arange(0, full_length, main_step)

    # One main step less because levels go on sticks, not
    # on intervals.
    xmax = full_length - main_step + step

    # Gives space to fully show markers in the top.
    ymax = full_length + 2

    plt.errorbar(x, pre_mean, fmt='r-o', yerr=pre_std, label=_('Precision'))
    plt.errorbar(x, rec_mean, fmt='b--s', yerr=rec_std, label=_('Recall'))

    plt.xlim(0, xmax)
    plt.ylim(0, ymax)
    plt.xticks(x, xlabels)

    if xtitle is None:
        xtitle = _('Range Quantization Levels')
    if ytitle is None:
        ytitle = _('Percentage')

    plt.xlabel(xtitle)
    plt.ylabel(ytitle)
    plt.legend(loc=4)
    plt.grid(True)

    entropy_labels = [str(e) for e in np.around(ent_mean, decimals=1)]

    cmap = mpl.colors.LinearSegmentedColormap.from_list(
        'mycolors', ['cyan', 'purple'])
    Z = [[0, 0], [0, 0]]
    levels = np.arange(0.0, xmax, step)
    CS3 = plt.contourf(Z, levels, cmap=cmap)

    cbar = plt.colorbar(CS3, orientation='horizontal')
    cbar.set_ticks(x)
    cbar.ax.set_xticklabels(entropy_labels)
    cbar.set_label(_('Entropy'))

    s = tag + 'graph_prse_MEAN' + _('-english')
    graph_filename = constants.picture_filename(s, action, occlusion,
                                                bars_type, tolerance)
    plt.savefig(graph_filename, dpi=600)
def plot_features_graph(domain,
                        means,
                        stdevs,
                        experiment,
                        occlusion=None,
                        bars_type=None):
    """ Draws the characterist shape of features per label.

    The graph is a dots and lines graph with error bars denoting standard deviations.
    """
    ymin = np.PINF
    ymax = np.NINF
    for i in constants.all_labels:
        yn = (means[i] - stdevs[i]).min()
        yx = (means[i] + stdevs[i]).max()
        ymin = ymin if ymin < yn else yn
        ymax = ymax if ymax > yx else yx

    main_step = 100.0 / domain
    xrange = np.arange(0, 100, main_step)
    fmts = get_formats(constants.n_labels)

    for i in constants.all_labels:
        plt.clf()
        plt.figure(figsize=(12, 5))

        plt.errorbar(xrange,
                     means[i],
                     fmt=fmts[i],
                     yerr=stdevs[i],
                     label=str(i))
        plt.xlim(0, 100)
        plt.ylim(ymin, ymax)
        plt.xticks(xrange, labels='')

        plt.xlabel(_('Features'))
        plt.ylabel(_('Values'))
        plt.legend(loc='right')
        plt.grid(True)

        filename = constants.features_name(
            experiment, occlusion, bars_type) + '-' + str(i) + _('-english')
        plt.savefig(constants.picture_filename(filename), dpi=500)