def test_prediction(self): x = TEST_DATA['pred']['x'] w = TEST_DATA['pred']['w'] theta = TEST_DATA['pred']['theta'] y = TEST_DATA['pred']['y'] y_computed = prediction(x, w, theta) max_diff = np.max(np.abs(y - y_computed)) self.assertAlmostEqual(max_diff, 0, 6)
def test_prediction(self): x = TEST_DATA['pred']['x'] w = TEST_DATA['pred']['w'] theta = TEST_DATA['pred']['theta'] y_expected = TEST_DATA['pred']['y'] y = prediction(x, w, theta) self.assertEqual(np.shape(y), (50, 1)) np.testing.assert_almost_equal(y, y_expected)
def face_detect_patch(patch, w, theta): patch = patch / 255.0 hog_patch = hog(patch) return prediction(np.transpose(np.concatenate(([[1]], hog_patch))), w, theta)