Beispiel #1
0
    def testAddStates(self):
        # Create a simple state class to add to the filter
            
        stateLength1 = np.random.randint(0, 10)
        cov1 = np.random.randint(0, 10)
        state1 = self.simpleState(
            stateLength1,
            {
                't':0,
                'stateVector':np.zeros(stateLength1),
                'covariance':np.eye(stateLength1)*cov1,
                'stateVectorID':0
            }
        )
        
        stateLength2 = np.random.randint(0, 10)
        cov2 = np.random.randint(1, 10)
        state2 = self.simpleState(
            stateLength2,
            {
                't':0,
                'stateVector':np.zeros(stateLength2),
                'covariance':np.eye(stateLength2)*cov2,
                'stateVectorID':0
            }
        )

        myFilter = md.ModularFilter()
        
        myFilter.addStates('state1', state1)
        myFilter.addStates('state2', state2)

        self.assertEqual(stateLength1 + stateLength2, myFilter.totalDimension)

        stackedCov = block_diag(np.eye(stateLength1) * cov1, np.eye(stateLength2) * cov2)
        self.assertTrue(np.all(stackedCov == myFilter.covarianceMatrix.value))

        with self.assertRaises(ValueError):
            myFilter.addStates('state1', state2)
Beispiel #2
0
eulerT0Est = eulerT0True
eulerT0Est = np.array([
    np.random.normal(eulerT0True[0], rollErrorStd),
    np.random.normal(eulerT0True[1], DecErrorStd),
    np.random.normal(eulerT0True[2], RAErrorStd)
])
biasEst = np.random.normal(biasTrue, scale=biasErrorSTD)
biasEst = np.array([0, 0, 0])

q0 = euler2quaternion(eulerT0True)

QScalar = 1e-12
RScalar = 1e-6

# Initiate filters
myJPDAF = me.ModularFilter(measurementValidationThreshold=0,
                           covarianceStorage='covariance')
myEKF = me.ModularFilter(covarianceStorage='covariance')
myML = me.ModularFilter(measurementValidationThreshold=1e-3,
                        covarianceStorage='covariance')
myTUOnly = me.ModularFilter(covarianceStorage='covariance')
initialAttitudeCovariance = np.zeros([3, 3])
initialAttitudeCovariance[0, 0] = np.square(rollErrorStd)
initialAttitudeCovariance[1, 1] = np.square(DecErrorStd)
initialAttitudeCovariance[2, 2] = np.square(RAErrorStd)

# initialAttitudeCovariance = attitude(0).rotation_matrix.transpose().dot(initialAttitudeCovariance).dot(attitude(0).rotation_matrix)

# Initiate attitude stubstates
JPDAFAtt = me.substates.Attitude(euler2quaternion(eulerT0Est),
                                 initialAttitudeCovariance,
                                 np.zeros(3),
Beispiel #3
0
        orbitAmplitude * np.cos(t / orbitPeriod),
        orbitAmplitude * np.sin(t / orbitPeriod), 0 * t
    ]))


def velocity(t):
    return (
        (orbitAmplitude / orbitPeriod) *
        np.array([-np.sin(t / orbitPeriod),
                  np.cos(t / orbitPeriod), 0 * t]))


corrSubstateDict = {}
photonMeasurements = []

myFilter = md.ModularFilter(covarianceStorage=covarianceStorageMethod)

# myPointSource = md.signals.StaticXRayPointSource(
#     pulsarRaDec['RA'] + 0.001,
#     pulsarRaDec['DEC'],
#     photonEnergyFlux=1e-15,
#     name='Dummy'
#     )

pointSourceObjectDict = {}

for signalIndex in range(len(pointSources)):
    myRow = pointSources.iloc[signalIndex]
    myRa = md.utils.spacegeometry.hms2rad(hms=myRow['ra'])
    myDec = md.utils.spacegeometry.dms2rad(dms=myRow['dec'])
    try:
Beispiel #4
0
    def generalizedTestRun(self, measUpdateMethod='EKF'):
        A1 = np.random.randint(10,100)
        A2 = np.random.randint(10,100)
        def pos1(t):
            return A1 * np.sin(t/10)
        def vel1(t):
            return A1 * np.cos(t/10)/10
        def acc1(t):
            return -A1 * np.sin(t/10)/100
        
        def pos2(t):
            return A2 * np.cos(t/10)
        def vel2(t):
            return -A2 * np.sin(t/10)/10
        def acc2(t):
            return -A2 * np.cos(t/10)/100
        
        myFilter = md.ModularFilter()
        myFilterChol = md.ModularFilter(covarianceStorage='cholesky')
        
        position1 = np.random.normal(pos1(0),1)
        velocity1 = np.random.normal(vel1(0),1)
        x1 = np.array([position1, velocity1])
        cov1 = np.eye(2) * np.abs(np.random.normal(2))
        positionObj1 = self.oneDPositionVelocity(
            'object1',
            {'t': 0,
             'stateVector': np.array([position1, velocity1]),
             'covariance': cov1,
             'stateVectorID': 0
             }
        )
        myFilter.addStates('object1', positionObj1)
        
        positionObj1Chol = self.oneDPositionVelocity(
            'object1',
            {'t': 0,
             'stateVector': np.array([position1, velocity1]),
             'covariance': np.linalg.cholesky(cov1),
             'stateVectorID': 0
             },
            covarianceStorage='cholesky'
        )
        myFilterChol.addStates('object1', positionObj1Chol)

        signalSource1 = self.oneDObjectMeasurement('object1')
        myFilter.addSignalSource('object1', signalSource1)
        
        myFilterChol.addSignalSource('object1', signalSource1)
        
        position2 = np.random.normal(pos2(0), 1)
        velocity2 = np.random.normal(vel2(0), 1)
        cov2 = np.eye(2)*np.abs(np.random.uniform(1,2))
        cov2[1,0] = np.random.uniform(0,1)
        cov2[0,1] = cov2[1,0]
        x2 = np.array([position2, velocity2])
        positionObj2 = self.oneDPositionVelocity(
            'object2',
            {'t': 0,
             'stateVector': np.array([position2, velocity2]),
             'covariance': cov2,
             'stateVectorID': 0
             }
        )
        myFilter.addStates('object2', positionObj2)
        signalSource2 = self.oneDObjectMeasurement('object2')
        myFilter.addSignalSource('object2', signalSource2)
        positionObj2Chol = self.oneDPositionVelocity(
            'object2',
            {'t': 0,
             'stateVector': np.array([position2, velocity2]),
             'covariance': np.linalg.cholesky(cov2),
             'stateVectorID': 0
             },
            covarianceStorage='cholesky'
        )
        myFilterChol.addStates('object2', positionObj2Chol)
        myFilterChol.addSignalSource('object2', signalSource2)

        self.assertEqual(myFilterChol.covarianceMatrix.form, 'cholesky')
        self.assertEqual(myFilter.covarianceMatrix.form, 'covariance')

        cov = block_diag(positionObj1.covariance().value, positionObj2.covariance().value)
        x = np.append(positionObj1.stateVector, positionObj2.stateVector)
        subQ = np.array([[1/4, 1/2],[1/2, 1]])
        FMat = np.array([[1,1],[0,1]])
        FMat = block_diag(FMat, FMat)

        for time in range(0,100,1):
            
            # Do dynamics update with randomly generated sigmas for acceleration
            sigmaA1 = np.random.uniform(0.1,1)
            sigmaA2 = np.random.uniform(0.1,1)
            a1meas = np.random.normal(acc1(time), sigmaA1)
            a2meas = np.random.normal(acc2(time), sigmaA1)
            dynamics={
                'object1acceleration': {
                    'value': a1meas,
                    'var': np.square(sigmaA1)
                },
                'object2acceleration': {
                    'value': a2meas,
                    'var': np.square(sigmaA2)
                }
            }
            myFilter.timeUpdateEKF(1, dynamics=dynamics)
            myFilterChol.timeUpdateEKF(1, dynamics=dynamics)
            Q = block_diag(subQ * np.square(sigmaA1), subQ * np.square(sigmaA2))
            cov =FMat.dot(cov).dot(FMat.transpose()) + Q
            x = FMat.dot(x) + np.array([0, a1meas, 0, a2meas])

            
            self.assertTrue(
                np.allclose(
                    myFilter.covarianceMatrix.value,
                    cov
                )
            )
            self.assertTrue(
                np.allclose(
                    myFilterChol.covarianceMatrix.convertCovariance('covariance').value,
                    cov
                )
            )
            self.assertTrue(
                np.allclose(
                    myFilter.getGlobalStateVector(),
                    x
                )
            )
            self.assertTrue(
                np.allclose(
                    myFilterChol.getGlobalStateVector(),
                    x
                )
            )

            # Now, generate random measurement matrices
            measIndicator = np.random.randint(0,2, size=4)
            #measIndicator = np.array([1,0,1,1])
            H = None
            R = None
            state1Meas = {}
            if measIndicator[0]:
                subH = np.array([1, 0, 0, 0])
                subR = np.random.uniform(0.1,1)
                y = np.random.normal(pos1(time), np.sqrt(subR))
                if H is None:
                    H = subH
                    R = np.array(subR)
                    yVec = np.array(y)
                else:
                    H = np.vstack([
                        H,
                        subH
                    ])
                    R = block_diag(R, subR)
                    yVec = np.append(yVec, y)
                state1Meas['position'] = {
                    'value': y,
                    'var': subR
                }
            if measIndicator[1]:
                subH = np.array([0, 1, 0, 0])
                subR = np.random.uniform(0.1,1)
                y = np.random.normal(vel1(time), np.sqrt(subR))
                if H is None:
                    H = subH
                    R = np.array(subR)
                    yVec = np.array(y)
                else:
                    H = np.vstack([
                        H,
                        subH
                    ])
                    R = block_diag(R, subR)
                    yVec = np.append(yVec, y)
                state1Meas['velocity'] = {
                    'value': y,
                    'var': subR
                }
                
            state2Meas = {}
            if measIndicator[2]:
                subH = np.array([0, 0, 1, 0])
                subR = np.random.uniform(0.1,1)
                y = np.random.normal(pos2(time), np.sqrt(subR))
                if H is None:
                    H = subH
                    R = np.array(subR)
                    yVec = np.array(y)
                else:
                    H = np.vstack([
                        H,
                        subH
                    ])
                    R = block_diag(R, subR)
                    yVec = np.append(yVec, y)
                state2Meas['position'] = {
                    'value': y,
                    'var': subR
                }
            
            if measIndicator[3]:
                subH = np.array([0, 0, 0, 1])
                subR = np.random.uniform(0.1,1)
                y = np.random.normal(vel2(time), np.sqrt(subR))
                if H is None:
                    H = subH
                    R = np.array(subR)
                    yVec = np.array(y)
                else:
                    H = np.vstack([
                        H,
                        subH
                    ])
                    R = block_diag(R, subR)
                    yVec = np.append(yVec, y)
                state2Meas['velocity'] = {
                    'value': y,
                    'var': subR
                }

            if measUpdateMethod == 'EKF':
                if H is not None:
                    S = H.dot(cov).dot(H.transpose()) + R

                    try:
                        K = cov.dot(H.transpose()).dot(np.linalg.inv(S))
                    except:
                        K = cov.dot(H.transpose())/S
                    dY = yVec - H.dot(x)
                    x = x + K.dot(dY)
                    if len(H.shape) == 1:
                        IminusKH = (np.eye(4) - np.outer(K,H))
                        cov = IminusKH.dot(cov).dot(IminusKH.transpose()) + (np.outer(K, K) * R)
                    else:
                        IminusKH = (np.eye(4) - K.dot(H))
                        cov = IminusKH.dot(cov).dot(IminusKH.transpose()) + K.dot(R).dot(K.transpose())

                if state1Meas:
                    myFilter.measurementUpdateEKF(state1Meas, 'object1')
                    myFilterChol.measurementUpdateEKF(state1Meas, 'object1')
                if state2Meas:
                    myFilter.measurementUpdateEKF(state2Meas, 'object2')
                    myFilterChol.measurementUpdateEKF(state2Meas, 'object2')
Beispiel #5
0
    def testMeasurementUpdateJPDAF(self):
        myFilter = md.ModularFilter()
        myFilterChol = md.ModularFilter(covarianceStorage='cholesky')
        x1 = np.array([0, 0])
        cov1 = np.eye(2)
        positionObj1 = self.oneDPositionVelocity(
            'object1',
            {'t': 0,
             'stateVector': x1,
             'covariance': cov1,
             'stateVectorID': 0
             }
        )
        myFilter.addStates('object1', positionObj1)
        
        positionObj1Chol = self.oneDPositionVelocity(
            'object1',
            {'t': 0,
             'stateVector': x1,
             'covariance': np.linalg.cholesky(cov1),
             'stateVectorID': 0
             },
            covarianceStorage='cholesky'
        )
        myFilterChol.addStates('object1', positionObj1Chol)


        signalSource1 = self.oneDObjectMeasurement('object1')
        myFilter.addSignalSource('object1', signalSource1)
        
        myFilterChol.addSignalSource('object1', signalSource1)
        
        cov2 = np.eye(2)
        x2 = np.array([10, 10])
        positionObj2 = self.oneDPositionVelocity(
            'object2',
            {'t': 0,
             'stateVector': x2,
             'covariance': cov2,
             'stateVectorID': 0
             }
        )
        myFilter.addStates('object2', positionObj2)
        signalSource2 = self.oneDObjectMeasurement('object2')
        myFilter.addSignalSource('object2', signalSource2)

        positionObj2Chol = self.oneDPositionVelocity(
            'object2',
            {'t': 0,
             'stateVector': x2,
             'covariance': np.linalg.cholesky(cov2),
             'stateVectorID': 0
             },
            covarianceStorage='cholesky'
        )
        myFilterChol.addStates('object2', positionObj2Chol)
        myFilterChol.addSignalSource('object2', signalSource2)

        # Generate some fake measurements which have a 50/50 chance of coming from either object
        myMeas = {
            'position': {
                'value': 5,
                'var': 1
            },
            'velocity': {
                'value': 5,
                'var':1
            }
        }
        myFilter.measurementUpdateJPDAF(myMeas)
        myFilterChol.measurementUpdateJPDAF(myMeas)

        self.assertTrue(np.allclose(
            myFilter.getGlobalStateVector(),
            myFilterChol.getGlobalStateVector()
            )
        )
        self.assertTrue(np.allclose(
            myFilter.covarianceMatrix.value,
            myFilterChol.covarianceMatrix.convertCovariance('covariance').value
            )
        )
Beispiel #6
0
    def testMeasurementUpdateEKF(self):
        myFilter = md.ModularFilter()
        myFilterChol = md.ModularFilter(covarianceStorage='cholesky')
        
        position1 = np.random.normal(1)
        velocity1 = np.random.normal(1)
        x1 = np.array([position1, velocity1])
        cov1 = np.eye(2) * np.abs(np.random.normal(2))
        positionObj1 = self.oneDPositionVelocity(
            'object1',
            {'t': 0,
             'stateVector': np.array([position1, velocity1]),
             'covariance': cov1,
             'stateVectorID': 0
             }
        )
        myFilter.addStates('object1', positionObj1)
        
        positionObj1Chol = self.oneDPositionVelocity(
            'object1',
            {'t': 0,
             'stateVector': np.array([position1, velocity1]),
             'covariance': np.linalg.cholesky(cov1),
             'stateVectorID': 0
             },
            covarianceStorage='cholesky'
        )
        myFilterChol.addStates('object1', positionObj1Chol)
        signalSource1 = self.oneDObjectMeasurement('object1')
        myFilter.addSignalSource('object1', signalSource1)
        
        myFilterChol.addSignalSource('object1', signalSource1)
        
        position2 = np.random.normal(1)
        velocity2 = np.random.normal(1)
        cov2 = np.eye(2)*np.abs(np.random.normal(2))
        x2 = np.array([position2, velocity2])
        positionObj2 = self.oneDPositionVelocity(
            'object2',
            {'t': 0,
             'stateVector': np.array([position2, velocity2]),
             'covariance': cov2,
             'stateVectorID': 0
             }
        )
        myFilter.addStates('object2', positionObj2)
        signalSource2 = self.oneDObjectMeasurement('object2')
        myFilter.addSignalSource('object2', signalSource2)

        positionObj2Chol = self.oneDPositionVelocity(
            'object2',
            {'t': 0,
             'stateVector': np.array([position2, velocity2]),
             'covariance': np.linalg.cholesky(cov2),
             'stateVectorID': 0
             },
            covarianceStorage='cholesky'
        )
        myFilterChol.addStates('object2', positionObj2Chol)
        
        myFilterChol.addSignalSource('object2', signalSource2)

        self.assertEqual(myFilterChol.covarianceMatrix.form, 'cholesky')
        self.assertEqual(myFilter.covarianceMatrix.form, 'covariance')
        
        # Generate postition measurement for state 1
        pos1Meas = np.random.normal(x1[0])
        v1Meas = np.random.normal(x1[1])
        state1Meas = {
            'position': {
                'value': pos1Meas,
                'var': 1
                },
        }
        myFilter.measurementUpdateEKF(state1Meas, 'object1')
        myFilterChol.measurementUpdateEKF(state1Meas, 'object1')

        # Now compute the measurement update independently.
        H = np.array([1,0])
        S = H.dot(cov1).dot(H.transpose()) + np.eye(1)
        K = cov1.dot(H.transpose())/(S[0,0])
        # K = cov1.dot(H.transpose()).dot(np.linalg.inv(S))
        dY = pos1Meas - H.dot(x1)
        x1Plus = x1 + K.dot(dY)
        IminusKH = (np.eye(2) - np.outer(K,H))
        # IminusKH = (np.eye(2) - K.dot(H))
        P1Plus = IminusKH.dot(cov1).dot(IminusKH.transpose()) + np.outer(K,K)
        # P1Plus = IminusKH.dot(cov1).dot(IminusKH.transpose()) + K.dot(K.transpose())

        # Verify that the updated state vector and covariance matches ours
        self.assertTrue(np.allclose(x1Plus, positionObj1.stateVector))
        self.assertTrue(np.allclose(x1Plus, positionObj1Chol.stateVector))
        
        self.assertTrue(np.allclose(P1Plus, positionObj1.covariance().value))
        self.assertTrue(np.allclose(
            np.linalg.cholesky(P1Plus),
            positionObj1Chol.covariance().value
        ))
        
        # Verify that state 2 is unchanged
        self.assertTrue(np.allclose(x2,positionObj2.stateVector))
        self.assertTrue(np.allclose(cov2, positionObj2.covariance().value))

        self.assertTrue(np.allclose(x2,positionObj2Chol.stateVector))
        self.assertTrue(np.allclose(np.linalg.cholesky(cov2), positionObj2Chol.covariance().value))
        
        # Generate velocity measurement for state2
        vVar = 1
        v2Meas = np.random.normal(x2[1], np.sqrt(vVar))
        state2Meas = {
            'velocity': {
                'value': v2Meas,
                'var': vVar
                }
        }
        
        myFilter.measurementUpdateEKF(state2Meas, 'object2')
        myFilterChol.measurementUpdateEKF(state2Meas, 'object2')

        # Now compute the measurement update independently.
        H = np.array([0,1])
        S = H.dot(cov2).dot(H.transpose()) + np.array([[vVar]])
        K = cov2.dot(H.transpose())/(S[0,0])
        dY = v2Meas - H.dot(x2)
        x2Plus = x2 + K.dot(dY)
        IminusKH = (np.eye(2) - np.outer(K,H))
        P2Plus = IminusKH.dot(cov2).dot(IminusKH.transpose()) + np.outer(K,K)*vVar
        
        # Verify that state 2 is updated and matches our state2 computations
        self.assertTrue(np.allclose(x2Plus, positionObj2.stateVector))
        self.assertTrue(np.allclose(P2Plus, positionObj2.covariance().value))
        
        self.assertTrue(np.allclose(x2Plus, positionObj2Chol.stateVector))
        self.assertTrue(np.allclose(np.linalg.cholesky(P2Plus), positionObj2Chol.covariance().value))
        
        # Verify that state 1 is unchanged
        self.assertTrue(np.allclose(x1Plus, positionObj1.stateVector))
        self.assertTrue(np.allclose(P1Plus, positionObj1.covariance().value))
        
        self.assertTrue(np.allclose(x1Plus, positionObj1Chol.stateVector))
        self.assertTrue(np.allclose(np.linalg.cholesky(P1Plus), positionObj1Chol.covariance().value))

        # Verify that the covariances are stored properly in the filter
        self.assertTrue(
            np.allclose(block_diag(P1Plus, P2Plus), myFilter.covarianceMatrix.value)
        )
        
        self.assertTrue(
            np.allclose(
                np.linalg.cholesky(block_diag(P1Plus, P2Plus)),
                myFilterChol.covarianceMatrix.value)
        )

        myFilter.timeUpdateEKF(1)
        myFilterChol.timeUpdateEKF(1)
        
        x1Minus = positionObj1.stateVector
        P1Minus = positionObj1.covariance().value
        x2Minus = positionObj2.stateVector
        P2Minus = positionObj2.covariance().value

        # Generate position and velocity measurement for state1
        vVar = 0.01
        x1Meas = np.random.normal(x1Minus[0], 1)
        v1Meas = np.random.normal(x1Minus[1], np.sqrt(vVar))
        state1Meas = {
            'velocity': {
                'value': v1Meas,
                'var': vVar
                },
            'position': {
                'value': x1Meas,
                'var': 1
                }
        }
        
        myFilter.measurementUpdateEKF(state1Meas, 'object1')
        myFilterChol.measurementUpdateEKF(state1Meas, 'object1')

        # Now compute the measurement update independently.
        H = np.array([[1,0],[0,1]])
        R = np.array([[1,0],[0,vVar]])
        S = H.dot(P1Minus).dot(H.transpose()) + R
        K = P1Minus.dot(H.transpose()).dot(np.linalg.inv(S))
        dY = np.array([x1Meas, v1Meas]) - H.dot(x1Minus)
        x1Plus = x1Minus + K.dot(dY)
        IminusKH = (np.eye(2) - K.dot(H))
        P1Plus = IminusKH.dot(P1Minus).dot(IminusKH.transpose()) + K.dot(R).dot(K.transpose())
        
        # Verify that state 1 is updated
        self.assertTrue(np.allclose(x1Plus, positionObj1.stateVector))
        self.assertTrue(np.allclose(P1Plus, positionObj1.covariance().value))
        
        self.assertTrue(np.allclose(x1Plus, positionObj1Chol.stateVector))
        self.assertTrue(np.allclose(P1Plus, positionObj1Chol.covariance().convertCovariance('covariance').value
        ))
        
        # Verify that state 2 is unchanged
        self.assertTrue(np.allclose(x2Minus, positionObj2.stateVector))
        self.assertTrue(np.allclose(P2Minus, positionObj2.covariance().value))
        
        self.assertTrue(np.allclose(x2Minus, positionObj2Chol.stateVector))
        self.assertTrue(np.allclose(P2Minus, positionObj2Chol.covariance().convertCovariance('covariance').value))
        self.assertTrue(np.allclose(np.abs(np.linalg.cholesky(P2Minus)), np.abs(positionObj2Chol.covariance().value)))
Beispiel #7
0
    def testTimeUpdateEKFCholesky(self):
        myFilter = md.ModularFilter(covarianceStorage='cholesky')
        position1 = np.random.normal(1)
        velocity1 = np.random.normal(1)
        x1 = np.array([position1, velocity1])
        cov1 = np.random.normal(np.zeros([2,2]))
        cov1 = cov1.dot(cov1.transpose())
        cov1Sqrt = np.linalg.cholesky(cov1)
        positionObj1 = self.oneDPositionVelocity(
            'object1',
            {'t': 0,
             'stateVector': np.array([position1, velocity1]),
             'covariance': cov1Sqrt,
             'stateVectorID': 0
             },
            covarianceStorage='cholesky'
        )
        myFilter.addStates('object1', positionObj1)

        position2 = np.random.normal(1)
        velocity2 = np.random.normal(1)
        cov2 = np.random.normal(np.zeros([2,2]))
        cov2 = cov2.dot(cov2.transpose())
        cov2Sqrt = np.linalg.cholesky(cov2)
        x2 = np.array([position2, velocity2])
        positionObj2 = self.oneDPositionVelocity(
            'object2',
            {'t': 0,
             'stateVector': np.array([position2, velocity2]),
             'covariance': cov2Sqrt,
             'stateVectorID': 0
             },
            covarianceStorage='cholesky'
        )
        myFilter.addStates('object2', positionObj2)
        self.assertEqual(positionObj1.covariance().form, 'cholesky')
        self.assertEqual(positionObj2.covariance().form, 'cholesky')
        self.assertEqual(myFilter.covarianceMatrix.form, 'cholesky')

        # First, test the time update without the dynamics
        myFilter.timeUpdateEKF(1)
        FMat = np.array([[1,1],[0,1]])
        
        self.assertTrue(
            np.allclose(
                positionObj1.covariance().convertCovariance('covariance').value,
                FMat.dot(cov1).dot(FMat.transpose())
                )
            )
        self.assertTrue(
            np.allclose(
                positionObj1.getStateVector()['stateVector'],
                FMat.dot(np.array([position1, velocity1]))
            )
        )
        
        self.assertTrue(
            np.allclose(
                positionObj2.covariance().convertCovariance('covariance').value,
                FMat.dot(cov2).dot(FMat.transpose())
                )
            )
        self.assertTrue(
            np.allclose(
                positionObj2.getStateVector()['stateVector'],
                FMat.dot(np.array([position2, velocity2]))
            )
        )

        # Now, do an update with dynamics
        dynamics={
            'object1acceleration': {'value':0,'var':1},
            'object2acceleration': {'value':1,'var':1}
        }
        cov1 = positionObj1.covariance().convertCovariance('covariance').value
        cov2 = positionObj2.covariance().convertCovariance('covariance').value
        x1 = positionObj1.stateVector
        x2 = positionObj2.stateVector
        myFilter.timeUpdateEKF(1, dynamics=dynamics)

        Q = np.array([[1/4, 1/2],[1/2, 1]])

        self.assertTrue(
            np.allclose(
                positionObj1.covariance().convertCovariance('covariance').value,
                FMat.dot(cov1).dot(FMat.transpose()) + Q
                )
            )
        self.assertTrue(
            np.allclose(
                positionObj1.getStateVector()['stateVector'],
                FMat.dot(x1)
            )
        )
        
        self.assertTrue(
            np.allclose(
                positionObj2.covariance().convertCovariance('covariance').value,
                FMat.dot(cov2).dot(FMat.transpose()) + Q
                )
            )
        self.assertTrue(
            np.allclose(
                positionObj2.getStateVector()['stateVector'],
                FMat.dot(x2) + np.array([0,1])
            )
        )

        self.assertTrue(positionObj1.getStateVector()['aPriori'])
        self.assertTrue(positionObj2.getStateVector()['aPriori'])
        
        self.assertEqual(positionObj1.getStateVector()['t'], 2)
        self.assertEqual(positionObj2.getStateVector()['t'], 2)
Beispiel #8
0
def run4DOFSimulation(traj):

    # pulsarDir = './pulsarData/'
    # pulsarCatalogFileName = 'pulsarCatalog.txt'

    pulsarObjectDict = loadPulsarData(detectorArea=traj.detectorArea)
    myPulsarObject = pulsarObjectDict[traj.pulsarName]
    pulsarRaDec = myPulsarObject.__RaDec__

    pointSources = md.utils.accessPSC.xamin_coneSearch(
        pulsarRaDec['RA'] * 180.0/np.pi,
        pulsarRaDec['DEC'] * 180.0/np.pi,
        FOV=traj.detectorFOV,
        catalog='xmmslewcln',
        fluxKey='flux_b8',
        # minSignificance=20
    )

    def attitude(t, returnQ=True):
        if hasattr(t, '__len__'):
            attitudeArray = []
            for i in range(len(t)):
                attitudeArray.append(attitude(t[i],returnQ))
            return attitudeArray
        else:
            #eulerAngles = [t * angularVelocity[0], t* angularVelocity[1], t* angularVelocity[2]]
            eulerAngles = [
                0,
                -pulsarRaDec['DEC'],
                pulsarRaDec['RA']
                ]
            if returnQ:
                return md.utils.euler2quaternion(eulerAngles)
            else:
                return(eulerAngles)

    def omega(t):
        return(traj.angularVelocity)

    def position(t):
        return(
            np.array([
                traj.orbitAmplitude * np.cos(t/traj.orbitPeriod),
                traj.orbitAmplitude * np.sin(t/traj.orbitPeriod),
                0 * t
            ])
        )

    def velocity(t):
        return(
            (traj.orbitAmplitude/traj.orbitPeriod) *
            np.array([
                -np.sin(t/traj.orbitPeriod),
                np.cos(t/traj.orbitPeriod),
                0 * t
                ]
            )
        )

    arrivalT = 1
    lastT = 0
    successfulRun = False
    vDrift = 0            
    pulsarUnitVector = myPulsarObject.unitVec()
    vMeas = velocity(arrivalT) + np.random.normal(0, scale=np.sqrt(traj.vVar), size=3)
    vDrift += vMeas.dot(pulsarUnitVector) * (arrivalT - lastT)
    
    arrivalT = 0
    lastT = 0
    
    while not successfulRun:
        # try:
        pointSourceObjectDict = {}

        photonMeasurements = []

        myFilter = md.ModularFilter()

        for signalIndex in range(len(pointSources)):
            myRow = pointSources.iloc[signalIndex]
            myRa = md.utils.spacegeometry.hms2rad(hms=myRow['ra'])
            myDec = md.utils.spacegeometry.dms2rad(dms=myRow['dec'])
            try:
                myFlux = float(myRow['flux'])
                print('Initializing static point source %s.' %myRow['name'])
            except:
                print('Point source %s had invalid flux.  Skipping.' %myRow['name'])

            if myFlux > 0.0 and myFlux < 1e-10:

                if (
                        (np.abs(pulsarRaDec['RA'] - myRa) > 1e-9) and
                        (np.abs(pulsarRaDec['DEC'] - myDec) > 1e-9)
                ):

                    pointSourceObjectDict[myRow['name']] = (
                        md.signals.StaticXRayPointSource(
                            myRa,
                            myDec,
                            photonEnergyFlux=myFlux,
                            detectorArea=traj.detectorArea,
                            name=myRow['name']
                            )
                        )
                    photonMeasurements+=pointSourceObjectDict[myRow['name']].generatePhotonArrivals(
                        traj.runtime,
                        attitude=attitude
                        )
                    try:
                        if myFlux > 1e-14:
                            myFilter.addSignalSource(myRow['name'],pointSourceObjectDict[myRow['name']])
                    except:
                        print('The signal source %s has already been added.  Skipping.' %myRow['name'])


        # Generate photon arrivals for each pulsar in the list
        photonMeasurements += myPulsarObject.generatePhotonArrivals(
            traj.runtime,
            position=position,
            attitude=attitude
        )

        if traj.scaleProcessNoise is True:
            processNoise = traj.processNoise * traj.detectorArea
        else:
            processNoise = traj.processNoise
        # print('Pulsar object period:')
        # print(myPulsarObject.pulsarPeriod)
        correlationSubstate = md.substates.CorrelationVector(
            myPulsarObject,
            traj.filterTaps,
            myPulsarObject.pulsarPeriod/(traj.filterTaps+1),
            signalTDOA=0,
            TDOAVar=myPulsarObject.pulsarPeriod,
            measurementNoiseScaleFactor=traj.measurementNoiseScaleFactor,
            processNoise=processNoise,
            centerPeak=True,
            peakLockThreshold=traj.peakLockThreshold,
        )

        myFilter.addSignalSource(myPulsarObject.name, myPulsarObject)
        myFilter.addStates(myPulsarObject.name, correlationSubstate)

        backgroundNoise = md.signals.UniformNoiseXRaySource(
            detectorArea=traj.detectorArea,
            detectorFOV=traj.detectorFOV
        )

        photonMeasurements += backgroundNoise.generatePhotonArrivals(traj.runtime)

        photonMeasurements = sorted(photonMeasurements, key=lambda k: k['t']['value'])

        initialAttitude = md.utils.euler2quaternion(
            attitude(0, returnQ=False) + np.random.normal(0, scale=traj.initialAttitudeSigma, size=3)
            )
        # print('initializing attitude')
        myAttitude = md.substates.Attitude(
            attitudeQuaternion=initialAttitude,
            attitudeErrorCovariance=np.eye(3)*np.square(traj.initialAttitudeSigma),
            gyroBiasCovariance=np.eye(3)*1e-100)
        myFilter.addStates('attitude', myAttitude)
        myFilter.addSignalSource('background', backgroundNoise)

        # myMeas = {
        #     't': {'value': 0}
        # }
        # myFilter.measurementUpdateEKF(myMeas, myPulsar.name)

        lastUpdateTime = 0
        lastT = 0

        timeUpdateOnlyTDOA = []
        timeUpdateOnlyT = []

        constantOffset = traj.constantPhaseOffset * myPulsarObject.pulsarPeriod

        for photonMeas in photonMeasurements:
            arrivalT = photonMeas['t']['value']
            vMeas = velocity(arrivalT) + np.random.normal(0, scale=np.sqrt(traj.vVar), size=3)

            vDrift += vMeas.dot(pulsarUnitVector) * (arrivalT - lastT)

            omegaMeas = omega(arrivalT) + np.random.normal(0,scale=np.sqrt(traj.omegaVar),size=3)

            dynamics = {
                'velocity': {'value': vMeas, 'var': np.eye(3)*traj.vVar},
                'omega': {'value': omega(arrivalT), 'var': np.eye(3) * traj.omegaVar},
            }
            if arrivalT > lastT:
                myFilter.timeUpdateEKF(arrivalT-lastT, dynamics=dynamics)
        #    if myCorrelation.peakLock is True:
        #        myCorrelation.realTimePlot()
            #myFilter.timeUpdateEKF(photon-lastT)
            # print(photonMeas)
            photonMeas['RA']['value'] = np.random.normal(photonMeas['RA']['value'], np.sqrt(traj.AOAVar))
            photonMeas['DEC']['value'] = np.random.normal(photonMeas['DEC']['value'], np.sqrt(traj.AOAVar))
            photonMeas['RA']['var'] = traj.AOAVar
            photonMeas['DEC']['var'] = traj.AOAVar
            photonMeas['t']['var'] = 1e-20
            photonMeas['t']['value'] -= constantOffset

            if traj.measurementUpdateMethod == 'EKF':
                myFilter.measurementUpdateEKF(photonMeas, photonMeas['name'])
            elif traj.measurementUpdateMethod == 'JPDAF':
                myFilter.measurementUpdateJPDAF(photonMeas)
            elif traj.measurementUpdateMethod == 'MLE':
                myFilter.measurementUpdateMLE(photonMeas)
            else:
                raise ValueError('Unrecougnized update method %s' %traj.measurementUpdateMethod)
            if (arrivalT-lastUpdateTime) > 100:
                lastUpdateTime = int(arrivalT)
                estimatedDelay = correlationSubstate.stateVectorHistory[-1]['signalTDOA']
                delayError = md.utils.spacegeometry.phaseError(
                    estimatedDelay,
                    constantOffset,
                    myPulsarObject.pulsarPeriod
                )
                print(
                    (
                        'Area: %i \tTime: %f\tTrue TDOA %f\t' +
                        'Est TDOA %f\tPhase Error %f\tVDrift %f'
                    )
                    %(
                        traj.detectorArea,
                        arrivalT,
                        constantOffset,
                        estimatedDelay,
                        delayError/myPulsarObject.pulsarPeriod,
                        vDrift
                    )
                )
                #myFilter.realTimePlot()
                # for key in corrSubstateDict:
                #     corrSubstateDict[key].realTimePlot()
            lastT = arrivalT
        successfulRun = True
        # except Exception as inst:
        #     print(type(inst))    # the exception instance
        #     print(inst.args)     # arguments stored in .args
        #     print(inst)
        #     print('Aborting run because of error... restarting.')
        
    traj.f_add_result(
        'correlationSubstate.$',
        correlationSubstate.getStateVector(),
        comment='Correlation vector substate'
    )
    traj.f_add_result(
        'attitudeSubstate.$',
        myAttitude.getStateVector(),
        comment='Attitude substate'
    )

    traj.f_add_result(
        'constantOffset.$',
        constantOffset,
        comment='Offset in seconds'
    )

    traj.f_add_result(
        'finalDelayError.$',
        md.utils.spacegeometry.phaseError(
            correlationSubstate.stateVectorHistory[-1]['signalTDOA'],
            constantOffset,
            myPulsarObject.pulsarPeriod
            ),
        comment='Final delay error estimate'
        )
    traj.f_add_result(
        'finalDelayVar.$',
        correlationSubstate.stateVectorHistory[-1]['TDOAVar'],
        comment='Variance of final TDOA estimate error'
        )
    
    traj.f_add_result(
        'finalEulerError.$',
        md.utils.eulerAngleDiff(
            myAttitude.stateVectorHistory[-1]['eulerAngles'],
            attitude(myAttitude.stateVectorHistory[-1]['t'], returnQ=False)
            ),
        comment='Final euler angle error'
        )
    traj.f_add_result(
        'eulerSTD.$',
        myAttitude.stateVectorHistory[-1]['eulerSTD'],
        comment='standard deviation of euler angle estimate error'
        )
    traj.f_add_result(
        'peakLock.$',
        correlationSubstate.peakLock,
        comment='indicates whether peak lock had been reached at end of run'
        )

    traj.f_add_result(
        'vDrift.$',
        vDrift,
        comment='Velocity integration drift over the course of the run, in km'
        )
Beispiel #9
0
    TDOAVar=0,
    measurementNoiseScaleFactor=1,
    processNoise=1e-5,
    centerPeak=True,
    peakLockThreshold=0.5,
    velocityNoiseScaleFactor=1,
    navProcessNoise=navProcessNoise,
    internalNavFilter='deep',
    vInitial=vInitial,
    aInitial=aInitial,
    gradInitial=gradInitial,
    peakEstimator='EK',
)
myCorrelation.storeLastStateVectors = 10

myFilter = md.ModularFilter()
myFilter.addSignalSource(myPulsar.name, myPulsar)
myFilter.addStates(myPulsar.name, myCorrelation)

myMeas = {'t': {'value': 0}}
myFilter.measurementUpdateEKF(myMeas, myPulsar.name)

lastUpdateTime = 0
lastT = 0

timeUpdateOnlyTDOA = []
lastTUOTDOA = mySpacecraft.dynamics.position(0).dot(
    myUnitVec) / myPulsar.speedOfLight()
timeUpdateOnlyT = []

vVec = [vInitial['value'] * speedOfLight]