def _main(args):
    """Run the command line program."""

    temperature_cube, temperature_history = gio.combine_files(args.temperature_file, args.temperature_var, checks=True)
    salinity_cube, salinity_history = gio.combine_files(args.salinity_file, 'sea_water_salinity', checks=True)
   
    assert 'c' in str(temperature_cube.units).lower(), "Input temperature units must be in celsius"
#    if not 'C' in str(bigthetao_cube.units):
#        bigthetao_cube.data = bigthetao_cube.data - 273.15
#        data_median = np.ma.median(bigthetao_cube.data)
#        assert data_median < 100
#        assert data_median > -10
#        bigthetao_cube.units = 'C'

    target_shape = temperature_cube.shape[1:]
    depth = temperature_cube.coord('depth').points * -1
    broadcast_depth = uconv.broadcast_array(depth, 0, target_shape)
    broadcast_longitude = uconv.broadcast_array(temperature_cube.coord('longitude').points, [1, 2], target_shape)
    broadcast_latitude = uconv.broadcast_array(temperature_cube.coord('latitude').points, [1, 2], target_shape)
    pressure = gsw.p_from_z(broadcast_depth, broadcast_latitude)

    absolute_salinity = gsw.SA_from_SP(salinity_cube.data, pressure, broadcast_longitude, broadcast_latitude)
    if args.temperature_var == 'sea_water_conservative_temperature':
        conservative_temperature = temperature_cube.data
    elif args.temperature_var == 'sea_water_potential_temperature':  
        conservative_temperature = gsw.CT_from_pt(absolute_salinity, temperature_cube.data)
    else:
        raise ValueError('Invalid temperature variable')

    if args.coefficient == 'alpha':
        coefficient_data = gsw.alpha(absolute_salinity, conservative_temperature, pressure)
        var_name = 'alpha'
        standard_name = 'thermal_expansion_coefficient'
        long_name = 'thermal expansion coefficient'
        units = '1/K'
    elif args.coefficient == 'beta':
        coefficient_data = gsw.beta(absolute_salinity, conservative_temperature, pressure)
        var_name = 'beta'
        standard_name = 'saline_contraction_coefficient'
        long_name = 'saline contraction coefficient'
        units = 'kg/g'
    else:
        raise ValueError('Coefficient must be alpha or beta')

    iris.std_names.STD_NAMES[standard_name] = {'canonical_units': units}
    coefficient_cube = temperature_cube.copy()
    coefficient_cube.data = coefficient_data
    coefficient_cube.standard_name = standard_name    
    coefficient_cube.long_name = long_name
    coefficient_cube.var_name = var_name
    coefficient_cube.units = units

    coefficient_cube.attributes['history'] = cmdprov.new_log(git_repo=repo_dir)
    iris.save(coefficient_cube, args.outfile)
Beispiel #2
0
def create_df(dcube, variable_name, vcube, bcube, basin, abort=True):
    """Create DataFrame"""

    if 'temperature' in variable_name:
        dcube = gio.temperature_unit_check(dcube,
                                           convert_to_celsius=True,
                                           abort=abort)
    elif 'salinity' in variable_name:
        dcube = gio.salinity_unit_check(dcube, abort=abort)

    assert dcube.ndim == 3
    coord_names = [coord.name() for coord in dcube.dim_coords]
    assert coord_names[0] == 'depth'

    if dcube.coord('latitude').ndim == 1:
        lat_loc = coord_names.index('latitude')
        lon_loc = coord_names.index('longitude')
    else:
        lat_loc = lon_loc = [1, 2]

    lats = uconv.broadcast_array(
        dcube.coord('latitude').points, lat_loc, dcube.shape)
    lons = uconv.broadcast_array(
        dcube.coord('longitude').points, lon_loc, dcube.shape)
    levs = uconv.broadcast_array(dcube.coord('depth').points, 0, dcube.shape)

    ddata = dcube.data.flatten()
    vdata = vcube.data.flatten()
    bdata = bcube.data.flatten()
    lat_data = lats.flatten()
    lon_data = lons.flatten()
    depth_data = levs.flatten()

    df = pandas.DataFrame(index=range(ddata.shape[0]))
    df[variable_name] = ddata.filled(fill_value=5000)
    df['volume'] = vdata.filled(fill_value=5000)
    df['basin'] = bdata.filled(fill_value=5000)
    df['latitude'] = lat_data
    df['longitude'] = lon_data
    df['depth'] = depth_data

    df = df[df[variable_name] != 5000]
    df = df[df[variable_name] != -273.15]

    if basin:
        df = select_basin(df, basin)

    return df
def calc_zonal_weights(cube, coord_names):
    """Calculate zonal weights.

    Defined as the zonal distance (m) spanned by each grid box. 

    The length of a degree of longitude is a function of 
      latitude. The formula for the length of one degree of 
      longitude is (pi/180) a cos(lat), where a is the radius of 
      the earth.

    Args:
      cube (iris.cube.Cube): Data cube
      coord_names (list): Names of each data coordinate

    Returns:
      iris.cube: Array of weights with shape matching data_shape

    """

    lon_coord = cube.coord('longitude')
    lon_index = coord_names.index('longitude')

    if not lon_coord.has_bounds():
        lon_coord.guess_bounds()

    coslat = cosine_latitude_weights(cube)
    radius = iris.analysis.cartography.DEFAULT_SPHERICAL_EARTH_RADIUS

    lon_diffs = numpy.apply_along_axis(lambda x: x[1] - x[0], 1,
                                       lon_coord.bounds)
    lon_diffs = uconv.broadcast_array(lon_diffs, lon_index, cube.shape)
    lon_extents = (math.pi / 180.) * radius * coslat * lon_diffs

    return lon_extents
def calc_meridional_weights(lat_coord, coord_names, data_shape):
    """Calculate meridional weights.

    Defined as the zonal distance (m) spanned by each grid box. 

    The length of a degree of latitude is (pi/180)*a, 
      where a is the radius of the earth.

    Args:
      lat_coord (iris.coords.DimCoord): One-dimensional latitude coordinate
      coord_names (list): Names of each data coordinate
      data_shape (tuple): Shape of data

    Returns:
      iris.cube: Array of weights with shape matching data_shape

    """

    lat_index = coord_names.index('latitude')

    if not lat_coord.has_bounds():
        lat_coord.guess_bounds()

    lat_diffs = numpy.apply_along_axis(lambda x: x[1] - x[0], 1,
                                       lat_coord.bounds)
    lat_diffs = uconv.broadcast_array(lat_diffs, lat_index, data_shape)
    lat_extents = (
        math.pi / 180.
    ) * iris.analysis.cartography.DEFAULT_SPHERICAL_EARTH_RADIUS * lat_diffs

    return lat_extents
def multiply_by_volume(cube, volume_cube=None):
    """Multiply by cell volume."""

    if volume_cube:
        cube_ndim = cube.ndim
        volume_ndim = volume_cube.ndim
        if not cube_ndim == volume_ndim:
            diff = cube_ndim - volume_ndim
            assert cube.shape[diff:] == volume_cube.shape
            volume_data = uconv.broadcast_array(
                volume_cube.data, [cube_ndim - volume_ndim, cube_ndim - 1],
                cube.shape)
        else:
            volume_data = volume_cube.data
    else:
        volume_data = volume_array(cube)

    units = str(cube.units)
    cube.data = cube.data * volume_data

    if 'm-3' in units:
        cube.units = units.replace('m-3', '').replace("  ", " ")
    else:
        cube.units = units + ' m3'

    return cube
def multiply_by_area(cube, area_cube=None):
    """Multiply by cell area."""

    if area_cube:
        cube_ndim = cube.ndim
        area_ndim = area_cube.ndim
        if not cube_ndim == area_ndim:
            diff = cube_ndim - area_ndim
            assert cube.shape[diff:] == area_cube.shape
            area_data = uconv.broadcast_array(
                area_cube.data, [cube_ndim - area_ndim, cube_ndim - 1],
                cube.shape)
        else:
            area_data = area_cube.data
    else:
        area_data = area_array(cube)

    units = str(cube.units)
    cube.data = cube.data * area_data

    if 'm-2' in units:
        cube.units = units.replace('m-2', '').replace("  ", " ")
    else:
        cube.units = units + ' m2'

    return cube
def read_data(infiles,
              var,
              area_cube,
              annual=False,
              multiply_by_area=False,
              chunk_annual=False):
    """Read the input data."""

    cube, history = gio.combine_files(infiles, var)
    if annual:
        cube = timeseries.convert_to_annual(cube,
                                            days_in_month=True,
                                            chunk=chunk_annual)

    cube = uconv.flux_to_magnitude(cube)
    if multiply_by_area:
        cube = spatial_weights.multiply_by_area(cube, area_cube=area_cube)

    coord_names = [coord.name() for coord in cube.coords(dim_coords=True)]
    assert cube.ndim == 3
    lats = cube.coord('latitude').points
    if lats.ndim == 1:
        lat_pos = coord_names.index('latitude')
        lats = uconv.broadcast_array(lats, lat_pos - 1, cube.shape[1:])
    else:
        assert lats.shape == cube.shape[1:]

    return cube, lats, history
def calc_vertical_weights_1D(depth_coord, coord_names, data_shape):
    """Calculate vertical weights for a 1D depth axis with units = m.

    Args:
      depth_coord (iris.coords.DimCoord): One-dimensional depth coordinate
      coord_names (list): Names of each data coordinate
      data_shape (tuple): Shape of data

    Returns:
      iris.cube: Array of weights with shape matching data_shape
  
    """

    assert depth_coord.units == 'm'

    # Calculate weights
    if not depth_coord.has_bounds():
        depth_coord.guess_bounds()
    level_bounds = depth_coord.bounds
    level_diffs = numpy.apply_along_axis(lambda x: x[1] - x[0], 1,
                                         level_bounds)

    #guess_bounds can produce negative bound at surface
    if level_bounds[0][0] < 0.0:
        level_diffs[0] = level_diffs[0] + level_bounds[0][0]

    # Broadcast to size of data
    depth_index = coord_names.index('depth')
    level_diffs = uconv.broadcast_array(level_diffs, depth_index, data_shape)

    assert level_diffs.min() > 0.0

    return level_diffs
Beispiel #9
0
def calc_zonal_vertical_mean(vertical_mean_cube, depth_cube, basin_array, basin_name, layer, atts,
                             original_standard_name, original_var_name):
    """Calculate the zonal mean of the vertical mean field."""

    assert layer in ['surface', 'argo']

    if not basin_name == 'globe':  
        vertical_mean_cube.data.mask = numpy.where((vertical_mean_cube.data.mask == False) & (basin_array == basins[basin_name]), False, True)

    if depth_cube:
        ndim = vertical_mean_cube.ndim
        depth_array = uconv.broadcast_array(depth_cube.data, [ndim - 2, ndim - 1], vertical_mean_cube.shape) 
    else: 
        depth_array = create_depth_array(vertical_mean_cube)

    max_depth = vertical_layers[layer][-1]
    depth_weights = numpy.ma.where(depth_array > max_depth, max_depth, depth_array)    

    zonal_vertical_mean_cube = vertical_mean_cube.collapsed(['longitude'], iris.analysis.MEAN, weights=depth_weights.astype(numpy.float32))   
    zonal_vertical_mean_cube.remove_coord('longitude')
    zonal_vertical_mean_cube.data = zonal_vertical_mean_cube.data.astype(numpy.float32)
        
    units = str(vertical_mean_cube.units)
    standard_name = 'zonal_vertical_mean_%s_%s_%s' %(basin_name, layer, original_standard_name)
    var_name = '%s_zvm_%s_%s'   %(original_var_name, basin_name, layer)
    zonal_vertical_mean_cube = add_metadata(atts, zonal_vertical_mean_cube, standard_name, var_name, units)

    return zonal_vertical_mean_cube
def main(inargs):
    """Run the program."""

    standard_names = {
        'thetao': 'sea_water_potential_temperature',
        'so': 'sea_water_salinity'
    }
    volume_cube = gio.get_ocean_weights(inargs.volfile)
    output_cubelist = iris.cube.CubeList([])
    for infile in inargs.infiles:
        cube = iris.load_cube(infile, standard_names[inargs.invar])
        weights = uconv.broadcast_array(volume_cube.data, [1, 3], cube.shape)
        coord_names = [coord.name() for coord in cube.dim_coords]
        aux_coord_names = [coord.name() for coord in cube.aux_coords]
        ga = cube.collapsed(coord_names[1:],
                            iris.analysis.MEAN,
                            weights=weights)
        for coord in coord_names[1:] + aux_coord_names:
            ga.remove_coord(coord)
        ga.var_name = inargs.invar + 'ga'
        output_cubelist.append(ga)
        print(infile)

    outcube = gio.combine_cubes(output_cubelist)
    metadata_dict = {}
    metadata_dict[infile] = cube.attributes['history']
    metadata_dict[inargs.volfile] = volume_cube.attributes['history']
    outcube.attributes['history'] = cmdprov.new_log(
        infile_history=metadata_dict, git_repo=repo_dir)
    iris.save(outcube, inargs.outfile)
Beispiel #11
0
def main(inargs):
    """Run the program."""

    data_dict = {}
    for experiment in list(experiment_colors.keys()):
        data_dict[(experiment, 'x_data')] = numpy.ma.array([])
        data_dict[(experiment, 'y_data')] = numpy.ma.array([])

    metadata_dict = {}
    for data_file, basin_file in inargs.file_pair:
        try:
            time_constraint = gio.get_time_constraint(inargs.time)
        except AttributeError:
            time_constraint = iris.Constraint()

        with iris.FUTURE.context(cell_datetime_objects=True):
            cube = iris.load_cube(data_file,
                                  'sea_surface_salinity' & time_constraint)

        basin_cube = read_basin(basin_file)
        ndim = cube.ndim
        basin_array = uconv.broadcast_array(basin_cube.data,
                                            [ndim - 2, ndim - 1], cube.shape)

        metadata_dict[data_file] = cube.attributes['history']
        metadata_dict[basin_file] = basin_cube.attributes['history']

        model, experiment = get_experiment_details(cube)

        for basin in list(basins.keys()):
            zonal_climatology, zonal_trends = calc_zonal_stats(
                cube.copy(), basin_array, basin)
            data_dict[(experiment, 'x_data')] = numpy.ma.append(
                data_dict[(experiment, 'x_data')], zonal_climatology)
            data_dict[(experiment, 'y_data')] = numpy.ma.append(
                data_dict[(experiment, 'y_data')], zonal_trends)

    fig = plt.figure(figsize=(12, 8))
    for experiment, color in experiment_colors.items():
        x_data = data_dict[(experiment, 'x_data')]
        y_data = data_dict[(experiment, 'y_data')]

        if numpy.any(x_data):
            plt.scatter(x_data[::inargs.thin],
                        y_data[::inargs.thin],
                        facecolors='none',
                        edgecolors=color,
                        label=experiment)
            if experiment in ['AA', 'noAA']:
                x_trend, y_trend = calc_trend(x_data, y_data, experiment)
                plt.plot(x_trend, y_trend, color=color)

    plt.legend(loc=4)
    plt.xlabel('Climatological mean salinity')
    plt.ylabel('Salinity trend (per 50 years)')
    plt.title(model)

    # Write output
    plt.savefig(inargs.outfile, bbox_inches='tight')
    gio.write_metadata(inargs.outfile, file_info=metadata_dict)
def volume_from_volume(target_cube, volume_cube):
    """Create volume array from volume data cube."""

    target_coord_names = [coord.name() for coord in target_cube.dim_coords]
    volume_coord_names = [coord.name() for coord in volume_cube.dim_coords]
    assert target_coord_names[0:2] == ['time', 'depth'
                                       ] and len(target_coord_names) == 4
    assert volume_coord_names[0] == 'depth'

    depth_match = numpy.array_equal(
        volume_cube.coord('depth').points,
        target_cube.coord('depth').points)

    if depth_match:
        volume_data = volume_cube.data
    else:
        depth_match = numpy.array_equal(
            volume_cube[::-1, ::].coord('depth').points,
            target_cube.coord('depth').points)
        assert depth_match
        volume_data = volume_cube[::-1, ::].data

    volume_data = uconv.broadcast_array(volume_data, [1, 3], target_cube.shape)

    return volume_data
def volume_from_area(target_cube, area_cube=None):
    """Create volume array from area data."""

    target_coord_names = [coord.name() for coord in target_cube.dim_coords]
    assert target_coord_names[0:2] == ['time', 'depth'
                                       ] and len(target_coord_names) == 4

    if area_cube:
        area_data = uconv.broadcast_array(area_cube.data, [2, 3],
                                          target_cube.shape)
    else:
        area_data = spatial_weights.area_array(target_cube)

    depth_axis = target_cube.coord('depth')
    assert depth_axis.units in ['m', 'dbar'], "Unrecognised depth axis units"

    if depth_axis.units == 'm':
        depth_data = calc_vertical_weights_1D(depth_axis, target_coord_names,
                                              target_cube.shape)
    elif depth_axis.units == 'dbar':
        assert coord_names == [
            'depth', 'latitude', 'longitude'
        ], "2D weights will not work for curvilinear grid"
        depth_data = calc_vertical_weights_2D(depth_axis,
                                              target_cube.coord('latitude'),
                                              target_coord_names,
                                              target_cube.shape)

    volume_data = area_data * depth_data
    assert volume_data.shape == target_cube.shape

    return volume_data
def main(inargs):
    """Run the program."""

    sfc_tbin_cube = iris.load_cube(
        inargs.sfc_file, 'total surface forcing binned by temperature')
    wfo_tbin_cube = iris.load_cube(
        inargs.wfo_file, 'Water Flux into Sea Water binned by temperature')
    cp = 3992.10322329649  #J kg-1 degC-1
    lower_tos_bounds = sfc_tbin_cube.coord('sea_surface_temperature').bounds[:,
                                                                             0]
    coord_names_tbin = [coord.name() for coord in sfc_tbin_cube.dim_coords]
    theta = uconv.broadcast_array(
        lower_tos_bounds, coord_names_tbin.index('sea_surface_temperature'),
        sfc_tbin_cube.shape)
    sfci_tbin_cube = sfc_tbin_cube.copy()
    sfci_tbin_cube.data = sfc_tbin_cube.data - (cp * theta * wfo_tbin_cube.data
                                                )  # SFCI = SFC - Cp*THETA*SVF
    sfci_tbin_cube.var_name = 'sfci_tbin'
    sfci_tbin_cube.long_name = 'total internal surface forcing binned by temperature'
    metadata = {
        inargs.sfc_file: sfc_tbin_cube.attributes['history'],
        inargs.wfo_file: wfo_tbin_cube.attributes['history']
    }
    log = cmdprov.new_log(infile_history=metadata, git_repo=repo_dir)
    sfci_tbin_cube.attributes['history'] = log

    sfc_tsbin_cube = iris.load_cube(
        inargs.sfc_file,
        'total surface forcing binned by temperature and salinity')
    wfo_tsbin_cube = iris.load_cube(
        inargs.wfo_file,
        'Water Flux into Sea Water binned by temperature and salinity')
    coord_names_tsbin = [coord.name() for coord in sfc_tsbin_cube.dim_coords]
    theta = uconv.broadcast_array(
        lower_tos_bounds, coord_names_tsbin.index('sea_surface_temperature'),
        sfc_tsbin_cube.shape)
    sfci_tsbin_cube = sfc_tsbin_cube.copy()
    sfci_tsbin_cube.data = sfc_tsbin_cube.data - (
        cp * theta * wfo_tsbin_cube.data)  # SFCI = SFC - Cp*THETA*SVF
    sfci_tsbin_cube.var_name = 'sfci_tsbin'
    sfci_tsbin_cube.long_name = 'total internal surface forcing binned by temperature and salinity'
    sfci_tsbin_cube.attributes['history'] = log

    cube_list = iris.cube.CubeList([sfci_tbin_cube, sfci_tsbin_cube])
    iris.save(cube_list, inargs.sfci_file)
Beispiel #15
0
def calc_spatial_agg(cube,
                     coord_names,
                     aux_coord_names,
                     grid_type,
                     aggregation_method,
                     area_cube,
                     lat_bounds=None,
                     chunk=False):
    """Load the infiles and calculate the spatial aggregate (sum or mean)."""

    cube = cube.copy()
    coord_names = coord_names.copy()

    # Extract region
    if lat_bounds:
        if grid_type == 'curvilinear':
            cube = extract_region_curvilinear(cube, lat_bounds)
        else:
            cube = extract_region_latlon(cube, lat_bounds)

    # Get area weights
    if type(area_cube) == iris.cube.Cube:
        if grid_type == 'latlon' and lat_bounds:
            area_cube = extract_region_latlon(area_cube, lat_bounds)
        area_weights = uconv.broadcast_array(area_cube.data, [1, 2],
                                             cube.shape)
    elif type(area_cube) == str:
        area_weights = spatial_weights.area_array(cube)
    else:
        area_weights = None

    # Calculate spatial aggregate
    coord_names.remove('time')
    if chunk:
        spatial_agg = uconv.chunked_collapse_by_time(cube,
                                                     coord_names,
                                                     aggregation_method,
                                                     weights=area_weights)
    else:
        spatial_agg = cube.collapsed(coord_names,
                                     aggregation_method,
                                     weights=area_weights)

    if area_cube and (aggregation_method == iris.analysis.SUM):
        units = str(spatial_agg.units)
        spatial_agg.units = units.replace('m-2', '')
    spatial_agg.remove_coord('latitude')
    spatial_agg.remove_coord('longitude')
    if grid_type == 'curvilinear':
        spatial_agg.remove_coord(coord_names[0])
        spatial_agg.remove_coord(coord_names[1])

    return spatial_agg
def calc_mean_anomaly(data_cube, clim_cube, sign, grid_areas):
    """Calculate the mean of all the positive or negative anomalies."""

    clim_data = uconv.broadcast_array(clim_cube.data, [1, 2], data_cube.shape)
    grid_areas = uconv.broadcast_array(grid_areas, [1, 2], data_cube.shape)

    if sign == 'positive':
        new_mask = numpy.where(
            (data_cube.data.mask == False) & (clim_data > 0.0), False, True)
    elif sign == 'negative':
        new_mask = numpy.where(
            (data_cube.data.mask == False) & (clim_data < 0.0), False, True)

    data_cube.data.mask = new_mask
    data_cube = data_cube.collapsed(['longitude', 'latitude'],
                                    iris.analysis.MEAN,
                                    weights=grid_areas)
    data_cube.remove_coord('longitude')
    data_cube.remove_coord('latitude')

    return data_cube
Beispiel #17
0
def main(inargs):
    """Run the program."""

    # Depth data
    data_cube = iris.load_cube(inargs.dummy_file, inargs.dummy_var)
    dim_coord_names = [coord.name() for coord in data_cube.dim_coords]
    aux_coord_names = [coord.name() for coord in data_cube.aux_coords]
    assert dim_coord_names[0] == 'time'
    depth_name = dim_coord_names[1]
    data_cube = data_cube[0, ::]
    data_cube.remove_coord('time')
    depth_data = spatial_weights.get_depth_array(data_cube, depth_name)
    # Area data
    if inargs.area_file:
        area_cube = iris.load_cube(inargs.area_file, 'cell_area')
        gio.check_global_ocean_area(area_cube.data.sum())
        area_data = uconv.broadcast_array(area_cube.data, [1, 2],
                                          depth_data.shape)
    else:
        area_data = spatial_weights.area_array(data_cube)

    volume_data = depth_data * area_data

    if inargs.sftof_file:
        sftof_cube = iris.load_cube(inargs.sftof_file)
        assert sftof_cube.data.max() == 100
        sftof_data = uconv.broadcast_array(sftof_cube.data, [1, 2],
                                           depth_data.shape)
        volume_data = volume_data * (sftof_data / 100.0)

    volume_data = numpy.ma.asarray(volume_data)
    data = numpy.ma.masked_invalid(data_cube.data)
    volume_data.mask = data.mask
    global_atts = area_cube.attributes if inargs.area_file else None
    volume_cube = construct_volume_cube(volume_data, data_cube, global_atts)
    volume_cube.attributes['history'] = gio.write_metadata()

    gio.check_global_ocean_volume(volume_cube.data.sum())

    iris.save(volume_cube, inargs.outfile)
Beispiel #18
0
def create_basin_array(cube, ref_is_basin):
    """Create an ocean basin array.

    Args:
      cube - reference cube (iris.cube.Cube)
      ref_is_basin - flag to indicate if ref cube is a CMIP basin cube (bool)

    """

    # Build latitude and longitude reference arrays
    lat_coord = cube.coord('latitude')
    lon_coord = cube.coord('longitude')
    if lat_coord.ndim == 1:
        # rectilinear grid
        lat_axis = lat_coord.points
        lon_axis = uconv.adjust_lon_range(lon_coord.points, radians=False)
        coord_names = [coord.name() for coord in cube.dim_coords]
        lat_index = coord_names.index('latitude')
        lon_index = coord_names.index('longitude')
        lat_array = uconv.broadcast_array(lat_axis, lat_index, cube.shape)
        lon_array = uconv.broadcast_array(lon_axis, lon_index, cube.shape)
    else:
        # curvilinear grid
        lon_coord = check_lon_coord(lon_coord)
        assert cube.ndim == 2
        lat_array = lat_coord.points
        lon_array = lon_coord.points

    # Create basin array
    pacific_lon_bounds = [147, 294]
    indian_lon_bounds = [23, 147]
    if ref_is_basin:
        basin_array = basins_from_cmip(cube, lat_array, lon_array,
                                       pacific_lon_bounds, indian_lon_bounds)
    else:
        basin_array = basins_manually(cube, lat_array, lon_array,
                                      pacific_lon_bounds, indian_lon_bounds)

    return basin_array
Beispiel #19
0
def create_mask(mask_cube, target_shape):
    """Create mask from an sftlf (land surface fraction) file.

    There is no land when cell value == 0

    """

    target_ndim = len(target_shape)
    land_array = numpy.where(mask_cube.data < 0.001, False, True)
    mask = uconv.broadcast_array(land_array, [target_ndim - 2, target_ndim - 1], target_shape)
    assert mask.shape == target_shape 

    return mask
Beispiel #20
0
def get_area_weights(cube, area_cube):
    """Get area weights for averaging"""

    if area_cube:
        area_weights = uconv.broadcast_array(area_cube.data, [1, 2],
                                             cube.shape)
    else:
        if not cube.coord('latitude').has_bounds():
            cube.coord('latitude').guess_bounds()
        if not cube.coord('longitude').has_bounds():
            cube.coord('longitude').guess_bounds()
        area_weights = iris.analysis.cartography.area_weights(cube)

    return area_weights
def _days_in_month_annual_mean(cube):
    """Calculate the annual mean timeseries accounting for days in month."""

    df, days_in_year = get_days_in_year(cube, return_df=True)
    
    df['weight'] = df.apply(lambda row: row['days_in_month'] / days_in_year.loc[row['year']], axis=1)
    np.testing.assert_allclose(df.groupby('year').sum()['weight'].min(), 1.0)
    np.testing.assert_allclose(df.groupby('year').sum()['weight'].max(), 1.0)

    weights_array = uconv.broadcast_array(df['weight'].values, 0, cube.shape)
    cube.data = cube.data * weights_array
    cube = cube.aggregated_by(['year'], iris.analysis.SUM)

    return cube
Beispiel #22
0
def convert_to_joules(cube):
    """Convert units to Joules"""

    assert 'W' in str(cube.units)
    assert 'days' in str(cube.coord('time').units)

    time_span_days = cube.coord('time').bounds[:, 1] - cube.coord(
        'time').bounds[:, 0]
    time_span_seconds = time_span_days * 60 * 60 * 24

    cube.data = cube.data * uconv.broadcast_array(time_span_seconds, 0,
                                                  cube.shape)
    cube.units = str(cube.units).replace('W', 'J')

    return cube
Beispiel #23
0
def broadcast_data(cube, target_shape):
    """Broadcast a static cube (e.g. basin, area, volume)."""

    target_ndim = len(target_shape)
    if not cube.ndim == target_ndim:
        diff = target_ndim - cube.ndim
        assert target_shape[diff:] == cube.shape
        data = uconv.broadcast_array(cube.data, [diff, target_ndim - 1],
                                     target_shape)
    else:
        data = cube.data

    assert target_shape == data.shape

    return data
def get_area_weights(cube, area_file, lat_constraint):
    """Get area weights for averaging"""

    if area_file:
        area_cube = iris.load_cube(inargs.area_file, lat_constraint)
    else:
        area_cube = None

    if area_cube:
        area_weights = uconv.broadcast_array(area_cube.data, [1, 2],
                                             cube.shape)
    else:
        area_weights = spatial_weights.area_array(cube)

    return area_weights
Beispiel #25
0
def select_basin(cube, basin_cube, basin_name):
    """Select an ocean basin."""
    
    basins = {'atlantic': 2, 
              'pacific': 3,
              'indian': 5}

    assert basin_name in basins.keys()

    assert cube.ndim == 4
    basin_array = uconv.broadcast_array(basin_cube.data, [1, 3], cube.shape) 

    cube.data.mask = numpy.where((cube.data.mask == False) & (basin_array == basins[basin_name]), False, True)

    return cube
Beispiel #26
0
def create_region_mask(latitude_array, target_shape, lat_bounds):
    """Create mask from the latitude auxillary coordinate"""

    target_ndim = len(target_shape)

    southern_lat, northern_lat = lat_bounds
    mask_array = numpy.where(
        (latitude_array >= southern_lat) & (latitude_array < northern_lat),
        False, True)

    mask = uconv.broadcast_array(mask_array,
                                 [target_ndim - 2, target_ndim - 1],
                                 target_shape)
    assert mask.shape == target_shape

    return mask
Beispiel #27
0
def _create_region_mask(horiz_array, target_shape, horiz_bounds):
    """Create mask from a horizontal (i.e. latitude or longitude) auxillary coordinate"""

    target_ndim = len(target_shape)

    lower_bound, upper_bound = horiz_bounds
    mask_array = numpy.where(
        (horiz_array >= lower_bound) & (horiz_array < upper_bound), False,
        True)

    mask = uconv.broadcast_array(mask_array,
                                 [target_ndim - 2, target_ndim - 1],
                                 target_shape)
    assert mask.shape == target_shape

    return mask
Beispiel #28
0
def select_basin(cube, basin_cube, basin_name):
    """Select an ocean basin."""

    assert basin_cube.shape == cube.shape[-2:]
    basin_array = uconv.broadcast_array(basin_cube.data, [cube.ndim - 2, cube.ndim - 1], cube.shape) 
    assert basin_array.min() == 11
    assert basin_array.max() == 18

    basins = {'atlantic': basin_array <= 12,
              'indo-pacific': (basin_array >= 13) & (basin_array <= 15),
              'globe': basin_array <= 16}

    assert basin_name in basins.keys()

    cube.data.mask = numpy.where((cube.data.mask == False) & basins[basin_name], False, True)

    return cube
Beispiel #29
0
def calc_region_sum(cube, coord_names, aux_coord_names, grid_type, area_cube,
                    region):
    """Calculate the spatial sum."""

    if grid_type == 'curvilinear':
        assert area_cube, "Must provide an area cube of curvilinear data"

    cube = cube.copy()
    coord_names = coord_names.copy()
    lat_bounds = region_bounds[region]

    # Extract region
    if lat_bounds:
        if grid_type == 'curvilinear':
            cube = extract_region_curvilinear(cube, lat_bounds)
        else:
            cube = extract_region_latlon(cube, lat_bounds)

    if 'm-2' in str(cube.units):
        # Get area weights
        if area_cube:
            if grid_type == 'latlon' and lat_bounds:
                area_cube = extract_region_latlon(area_cube, lat_bounds)
            area_data = uconv.broadcast_array(area_cube.data, [1, 2],
                                              cube.shape)
        else:
            area_data = spatial_weights.area_array(cube)

        # Multiply by area
        cube.data = cube.data * area_data
        units = str(cube.units)
        cube.units = units.replace('m-2', '')

    assert cube.units == 'J'

    coord_names.remove('time')
    spatial_agg = cube.collapsed(coord_names, iris.analysis.SUM)

    spatial_agg.remove_coord('latitude')
    spatial_agg.remove_coord('longitude')
    if grid_type == 'curvilinear':
        spatial_agg.remove_coord(coord_names[0])
        spatial_agg.remove_coord(coord_names[1])

    return spatial_agg
def area_ajustment(data_cube, area_file, metadata_dict):
    """Multipy a data cube by its cell area."""

    if area_file:
        area_cube = iris.load_cube(area_file[0])
        area_data = uconv.broadcast_array(area_cube.data, [1, 2],
                                          data_cube.shape)
        metadata_dict[area_file[0]] = area_cube.attributes['history']
    else:
        area_data = get_areacello_data(data_cube)

    data_cube.data = data_cube.data * area_data
    if 'm-2' in str(data_cube.units):
        units = str(data_cube.units).replace('m-2', "")
    else:
        units = str(data_cube.units) + ' m2'

    return data_cube, units, metadata_dict