Beispiel #1
0
def main():
    image = lena().astype(np.float) / 255.
    h, w = image.shape

    y_true = image.ravel()
    noise = np.random.normal(0, 0.1, y_true.shape)
    y_noisy = y_true + noise

    grad = image_gradient_operator(h, w)

    l1 = 0.1 * GroupL1Norm((2, h, w), 0)
    #l1 = 0.1 * SliceSeparableNorm(L2Norm(), (2, h * w), 1)
    l2 = L2Distance(y_noisy)
    obj = lambda x: l1(grad * x) + l2(x)

    algo = APGM(l2,
                l1,
                A=grad,
                maxiter=50,
                x0=y_noisy,
                objectives=ObjectiveLogger(obj),
                errors=ErrorLogger(y_true))

    t0 = time.time()
    y_denoised = algo.run()
    print "took %.3f seconds" % (time.time() - t0)

    pl.figure()
    pl.gray()

    for i, (title, v) in enumerate([('ground truth', y_true),
                                    ('noisy', y_noisy),
                                    ('denoised', y_denoised)]):
        pl.subplot(2, 3, i + 1)
        pl.title(title)
        pl.xticks([])
        pl.yticks([])
        pl.imshow(v.reshape(image.shape), vmin=0, vmax=1)

    pl.subplot(2, 3, 4)
    pl.title('Objective Function')
    pl.plot(algo.objectives)
    pl.ylabel('objective')
    pl.xlabel('iteration')

    pl.subplot(2, 3, 5)
    pl.title('Errors')
    pl.plot(algo.errors)
    pl.ylabel('error')
    pl.xlabel('iteration')

    pl.draw()
    pl.show()
Beispiel #2
0
def main():
    image = lena().astype(np.float) / 255.
    h, w = image.shape

    y_true = image.ravel()
    noise = np.random.normal(0, 0.1, y_true.shape)
    y_noisy = y_true + noise

    grad = image_gradient_operator(h, w)

    l1 = 0.1 * GroupL1Norm((2, h, w), 0)
    #l1 = 0.1 * SliceSeparableNorm(L2Norm(), (2, h * w), 1)
    l2 = L2Distance(y_noisy)
    obj = lambda x: l1(grad * x) + l2(x)
    
    algo = APGM(l2, l1, A=grad, maxiter=50, x0=y_noisy, 
                objectives=ObjectiveLogger(obj), 
                errors=ErrorLogger(y_true) )

    t0 = time.time()
    y_denoised = algo.run()
    print "took %.3f seconds" % (time.time() - t0)

    pl.figure()
    pl.gray()

    for i, (title, v) in enumerate([('ground truth', y_true), 
                                    ('noisy', y_noisy),
                                    ('denoised', y_denoised)]):
        pl.subplot(2, 3, i+1)
        pl.title(title)
        pl.xticks([])
        pl.yticks([])
        pl.imshow(v.reshape(image.shape), vmin=0, vmax=1)

    pl.subplot(2, 3, 4)
    pl.title('Objective Function')
    pl.plot(algo.objectives)
    pl.ylabel('objective')
    pl.xlabel('iteration')

    pl.subplot(2, 3, 5)
    pl.title('Errors')
    pl.plot(algo.errors)
    pl.ylabel('error')
    pl.xlabel('iteration')

    pl.draw()
    pl.show()
Beispiel #3
0
    b = A.matvec(x)

    # setup problem argmin_x 0.5 ||A x - b||_2^2 + ||x||_1
    l1 = 1e-2 * L1Norm()
    l2 = DataTerm(A, b)

    # solve
    maxiter = 5000
    
    dr = DouglasRachford(l2, l1, gamma=0.1, maxiter=maxiter, objectives=ObjectiveLogger(l1 + l2), errors=ErrorLogger(x))
    dr.run()
    print "reasons for stopping: " + ", ".join(message for cls, message in dr.stopping_reasons)
    np.testing.assert_array_almost_equal(x, dr.x, decimal=3)

    apgm = APGM(l2, l1, rho=0.5, maxiter=maxiter, objectives=ObjectiveLogger(l1 + l2), errors=ErrorLogger(x))
    apgm.run()
    print "reasons for stopping: " + ", ".join(message for cls, message in apgm.stopping_reasons)
    np.testing.assert_array_almost_equal(x, apgm.x, decimal=3)
    
    alg1 = ForwardBackward(l1, l2, maxiter=maxiter, objectives=ObjectiveLogger(l1 + l2), errors=ErrorLogger(x))
    alg1.run()
    print "reasons for stopping: " + ", ".join(message for cls, message in alg1.stopping_reasons)
    np.testing.assert_array_almost_equal(x, alg1.x, decimal=3)

    xr = forward_backward(l1, l2, maxiter=maxiter)
    np.testing.assert_array_equal(alg1.x, xr)

    alg2 = ForwardBackward(l1, l2, maxiter=maxiter, alpha=0.9, objectives=ObjectiveLogger(l1 + l2), errors=ErrorLogger(x))
    alg2.run()
    print "reasons for stopping: " + ", ".join(message for cls, message in alg2.stopping_reasons)
    np.testing.assert_array_almost_equal(x, alg2.x, decimal=3)