Beispiel #1
0
def getSaliencyFrame(frame):
    widthFrame = len(frame[0])
    heightFrame = len(frame)
    cv2.imshow('frame', frame)
    #compress the frame
    frame = cv2.resize(frame, (64, 64), interpolation=cv2.INTER_CUBIC)
    # fourier analyse
    imageFourier = np.fft.fft2(frame)
    # show imageFourier
    showPlot(imageFourier)
    cv2.imshow('fourier', np.abs(imageFourier))
    # we now have the spectrum analyse
    # by using convolve we can blur the frame
    imageConvolve = convolutions.convolve(frame, np.abs(kernel(9)))
    # take the fourier analyse of the convolve
    fourierConvolve = np.fft.fft2(imageConvolve)
    showPlot(fourierConvolve)
    cv2.imshow('averagedSpectrum', np.abs(fourierConvolve))
    #substract two images
    spectralResidual = np.subtract(fourierConvolve, imageFourier)
    showPlot(spectralResidual)
    # inverse fourier analyse
    saliencyImage = np.fft.ifft2(spectralResidual)
    showPlot(saliencyImage)
    saliencyImage = cv2.resize(np.abs(saliencyImage),
                               (widthFrame, heightFrame))
    cv2.imshow('saliency', saliencyImage)

    # while True:
    #     if cv2.waitKey(1) & 0xFF == ord('q'):
    #         break
    return saliencyImage
Beispiel #2
0
def main():
    image = scipy.misc.imread('image.jpg')
    width, height, num_colors = image.shape

    im = np.zeros([num_colors, width, height])
    for i in xrange(num_colors):
        im[i, :, :] = image[:, :, i]

    w1 = np.array([
        [0, -1, 0],
        [-1, 4, -1],
        [0, -1, 0],
    ])
    w2 = np.array([
        [-1, 0, 1],
        [-2, 0, 2],
        [-1, 0, 1],
    ])
    w3 = np.array([
        [-1, -2, -1],
        [0, 0, 0],
        [1, 2, 1],
    ])

    w = np.zeros([3, 3, 3])
    w[0, :, :] = w1
    w[1, :, :] = w2
    w[2, :, :] = w3
    kernel_size = w.shape[1]
    padding = kernel_size / 2

    w_flip = w[:, ::-1, ::-1]
    result = convolutions.convolve(im[np.newaxis, :, :, :],
                                   w_flip[:, np.newaxis, :, :],
                                   padding=padding)

    plt.subplot(2, 2, 1)
    plt.imshow(image)
    for k in xrange(3):
        res = result[k, :, :, :]
        res -= res.min()
        res /= res.max()
        res *= 255
        r = np.zeros([width, height, num_colors], dtype=np.uint8)
        for i in xrange(num_colors):
            r[:, :, i] = res[i, :, :]
        plt.subplot(2, 2, 2 + k)
        plt.imshow(r)
    plt.show()
scaleFrameX = widthFrame / 64
scaleFrameY = int((64 / widthFrame) * heightFrame)
cv2.imshow('frame', frame)
frame = cv2.resize(frame, (64, 64), interpolation=cv2.INTER_CUBIC)
# frame = convolutions.convolve(frame, np.abs(kernel(5)))

showPlot(np.zeros((5, 5)))

imageFourier = np.fft.fft2(frame)
logImageFourier = np.log(imageFourier)
showPlot(imageFourier)
cv2.imshow('fourier', np.abs(imageFourier))

# we now have the spectrum analyse
# wich needs to be logaritmic:
imageConvolve = convolutions.convolve(frame, np.abs(kernel(9)))
cv2.imshow('org', np.abs(frame))
cv2.imshow('blur', np.abs(imageConvolve))
fourierConvolve = np.fft.fft2(imageConvolve)
logFourierConvolve = np.log(fourierConvolve)
showPlot(fourierConvolve)
cv2.imshow('averagedSpectrum', np.abs(fourierConvolve))
# averagedSpectrum = np.multiply(imageConvolve, logSpectrum)
# showPlot(averagedSpectrum)
phase = np.angle(imageFourier)
spectralResidual = np.subtract(logFourierConvolve, logImageFourier)
spectralResidual = np.exp(spectralResidual + 1j * phase)**2

showPlot(spectralResidual)

saliencyImage = np.fft.ifft2(spectralResidual)