def __init__(self, cnt): n = Network() n.add( Layer('input', 2) ) n.add( Layer('hidden', 3) ) n.add( Layer('output', 1) ) n.connect('input', 'hidden') n.connect('hidden', 'output') n.setInputs([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]]) n.setOutputs([[0.0], [1.0], [1.0], [0.0]]) n.setVerbosity(0) n.setTolerance(.4) n.setLearning(0) g = n.arrayify() self.network = n GA.__init__(self, Population(cnt, Gene, size=len(g), verbose=1, min=-10, max=10, maxStep = 1, imin=-10, imax=10, elitePercent = .01), mutationRate=0.05, crossoverRate=0.6, maxGeneration=400, verbose=1)
def test_dataset(): """ Load MNIST dataset after network creation. """ net = Network("MNIST") net.add( Layer("input", shape=784, vshape=(28, 28), colormap="hot", minmax=(0, 1))) net.add( Layer("hidden1", shape=512, vshape=(16, 32), activation='relu', dropout=0.2)) net.add( Layer("hidden2", shape=512, vshape=(16, 32), activation='relu', dropout=0.2)) net.add(Layer("output", shape=10, activation='softmax')) net.connect('input', 'hidden1') net.connect('hidden1', 'hidden2') net.connect('hidden2', 'output') net.compile(optimizer="adam", error="binary_crossentropy") net.dataset.get("mnist") assert net is not None
def import_keras_model(model, network_name): """ Import a keras model into conx. """ from .network import Network import inspect import conx network = Network(network_name) network.model = model conx_layers = { name: layer for (name, layer) in inspect.getmembers(conx.layers, inspect.isclass) } # First, make all of the conx layers: for layer in model.layers: clayer_class = conx_layers[layer.__class__.__name__ + "Layer"] if clayer_class.__name__ == "InputLayerLayer": clayer = conx.layers.InputLayer(layer.name, None) #clayer.make_input_layer_k = lambda layer=layer: layer clayer.shape = None clayer.params["batch_shape"] = layer.get_config( )["batch_input_shape"] #clayer.params = layer.get_config() clayer.k = clayer.make_input_layer_k() clayer.keras_layer = clayer.k else: clayer = clayer_class(**layer.get_config()) clayer.k = layer clayer.keras_layer = layer network.add(clayer) # Next, connect them up: for layer_from in model.layers: for node in layer.outbound_nodes: network.connect(layer_from, node.outbound_layer.name) print("connecting:", layer_from, node.outbound_layer.name) # Connect them all up, and set input banks: network.connect() for clayer in network.layers: clayer.input_names = network.input_bank_order # Finally, make the internal models: for clayer in network.layers: ## FIXME: the appropriate inputs: if clayer.kind() != "input": clayer.model = keras.models.Model( inputs=model.layers[0].input, outputs=clayer.keras_layer.output) return network
def test_xor1(): """ Standard XOR. """ net = Network("XOR") net.add(Layer("input", 2)) net.add(Layer("hidden", 5)) net.add(Layer("output", 1)) net.connect("input", "hidden") net.connect("hidden", "output") net.compile(error="binary_crossentropy", optimizer="adam") net.summary() net.model.summary() net.dataset.load([[[0, 0], [0]], [[0, 1], [1]], [[1, 0], [1]], [[1, 1], [0]]]) net.train(epochs=2000, accuracy=1, report_rate=25) net.test() net.save_weights("/tmp") net.load_weights("/tmp") svg = net.build_svg() assert net is not None
def test_xor1(): """ Standard XOR. """ net = Network("XOR") net.add(Layer("input", 2)) net.add(Layer("hidden", 5)) net.add(Layer("output", 1)) net.connect("input", "hidden") net.connect("hidden", "output") net.compile(error="binary_crossentropy", optimizer="adam") net.summary() net.model.summary() net.dataset.load([[[0, 0], [0]], [[0, 1], [1]], [[1, 0], [1]], [[1, 1], [0]]]) net.train(epochs=2000, accuracy=1, report_rate=25, plot=False) net.evaluate(show=True) net.save_weights("/tmp") net.load_weights("/tmp") svg = net.to_svg() assert net is not None
def test_images(): net = Network("MNIST") net.dataset.get("mnist") assert net.dataset.inputs.shape == [(28,28,1)] net.add(Layer("input", shape=(28, 28, 1), colormap="hot", minmax=(0,1))) net.add(FlattenLayer("flatten")) net.add(Layer("hidden1", shape=512, vshape=(16,32), activation='relu', dropout=0.2)) net.add(Layer("hidden2", shape=512, vshape=(16,32), activation='relu', dropout=0.2)) net.add(Layer("output", shape=10, activation='softmax')) net.connect('input', 'flatten') net.connect('flatten', 'hidden1') net.connect('hidden1', 'hidden2') net.connect('hidden2', 'output') net.compile(optimizer="adam", error="binary_crossentropy") svg = net.to_svg() assert svg is not None net.dataset.clear()
def test_images(): net = Network("MNIST") net.get_dataset("mnist") assert net.dataset.inputs.shape == [(28,28,1)] net.add(Layer("input", shape=(28, 28, 1), colormap="hot", minmax=(0,1))) net.add(FlattenLayer("flatten")) net.add(Layer("hidden1", shape=512, vshape=(16,32), activation='relu', dropout=0.2)) net.add(Layer("hidden2", shape=512, vshape=(16,32), activation='relu', dropout=0.2)) net.add(Layer("output", shape=10, activation='softmax')) net.connect('input', 'flatten') net.connect('flatten', 'hidden1') net.connect('hidden1', 'hidden2') net.connect('hidden2', 'output') net.compile(optimizer="adam", error="binary_crossentropy") svg = net.to_svg() assert svg is not None net.dataset.clear()
def test_xor2(): """ Two inputs, two outputs. """ net = Network("XOR2") net.add(Layer("input1", shape=1)) net.add(Layer("input2", shape=1)) net.add(Layer("hidden1", shape=2, activation="sigmoid")) net.add(Layer("hidden2", shape=2, activation="sigmoid")) net.add(Layer("shared-hidden", shape=2, activation="sigmoid")) net.add(Layer("output1", shape=1, activation="sigmoid")) net.add(Layer("output2", shape=1, activation="sigmoid")) net.connect("input1", "hidden1") net.connect("input2", "hidden2") net.connect("hidden1", "shared-hidden") net.connect("hidden2", "shared-hidden") net.connect("shared-hidden", "output1") net.connect("shared-hidden", "output2") net.compile(error='mean_squared_error', optimizer=SGD(lr=0.3, momentum=0.9)) net.dataset.load([ ([[0],[0]], [[0],[0]]), ([[0],[1]], [[1],[1]]), ([[1],[0]], [[1],[1]]), ([[1],[1]], [[0],[0]]) ]) net.train(2000, report_rate=10, accuracy=1, plot=False) net.test() net.propagate_to("shared-hidden", [[1], [1]]) net.propagate_to("output1", [[1], [1]]) net.propagate_to("output2", [[1], [1]]) net.propagate_to("hidden1", [[1], [1]]) net.propagate_to("hidden2", [[1], [1]]) net.propagate_to("output1", [[1], [1]]) net.propagate_to("output2", [[1], [1]]) net.save_weights("/tmp") net.load_weights("/tmp") net.test() svg = net.to_svg() assert net is not None
def test_xor2(): """ Two inputs, two outputs. """ net = Network("XOR2") net.add(Layer("input1", shape=1)) net.add(Layer("input2", shape=1)) net.add(Layer("hidden1", shape=2, activation="sigmoid")) net.add(Layer("hidden2", shape=2, activation="sigmoid")) net.add(Layer("shared-hidden", shape=2, activation="sigmoid")) net.add(Layer("output1", shape=1, activation="sigmoid")) net.add(Layer("output2", shape=1, activation="sigmoid")) net.connect("input1", "hidden1") net.connect("input2", "hidden2") net.connect("hidden1", "shared-hidden") net.connect("hidden2", "shared-hidden") net.connect("shared-hidden", "output1") net.connect("shared-hidden", "output2") net.compile(error='mean_squared_error', optimizer=SGD(lr=0.3, momentum=0.9)) net.dataset.load([ ([[0],[0]], [[0],[0]]), ([[0],[1]], [[1],[1]]), ([[1],[0]], [[1],[1]]), ([[1],[1]], [[0],[0]]) ]) net.train(2000, report_rate=10, accuracy=1, plot=False) net.evaluate(show=True) net.propagate_to("shared-hidden", [[1], [1]]) net.propagate_to("output1", [[1], [1]]) net.propagate_to("output2", [[1], [1]]) net.propagate_to("hidden1", [[1], [1]]) net.propagate_to("hidden2", [[1], [1]]) net.propagate_to("output1", [[1], [1]]) net.propagate_to("output2", [[1], [1]]) net.save_weights("/tmp") net.load_weights("/tmp") net.evaluate(show=True) svg = net.to_svg() assert net is not None
def test_dataset(): """ Load Virtual MNIST dataset after network creation. """ net = Network("MNIST") net.add(Layer("input", shape=784, vshape=(28, 28), colormap="hot", minmax=(0,1))) net.add(Layer("hidden1", shape=512, vshape=(16,32), activation='relu', dropout=0.2)) net.add(Layer("hidden2", shape=512, vshape=(16,32), activation='relu', dropout=0.2)) net.add(Layer("output", shape=10, activation='softmax')) net.connect('input', 'hidden1') net.connect('hidden1', 'hidden2') net.connect('hidden2', 'output') net.compile(optimizer="adam", error="binary_crossentropy") net.get_dataset("mnist") assert net is not None net.dataset.clear()
def test_cifar10(): """ Test the cifar10 API and training. """ from conx import Network, Layer, Conv2DLayer, MaxPool2DLayer, FlattenLayer batch_size = 32 num_classes = 10 epochs = 200 data_augmentation = True num_predictions = 20 net = Network("CIRAR10") net.add(Layer("input", (32, 32, 3))) net.add(Conv2DLayer("conv1", 32, (3, 3), padding='same', activation='relu')) net.add(Conv2DLayer("conv2", 32, (3, 3), activation='relu')) net.add(MaxPool2DLayer("pool1", pool_size=(2, 2), dropout=0.25)) net.add(Conv2DLayer("conv3", 64, (3, 3), padding='same', activation='relu')) net.add(Conv2DLayer("conv4", 64, (3, 3), activation='relu')) net.add(MaxPool2DLayer("pool2", pool_size=(2, 2), dropout=0.25)) net.add(FlattenLayer("flatten")) net.add( Layer("hidden1", 512, activation='relu', vshape=(16, 32), dropout=0.5)) net.add(Layer("output", num_classes, activation='softmax')) net.connect() # initiate RMSprop optimizer opt = RMSprop(lr=0.0001, decay=1e-6) net.compile(error='categorical_crossentropy', optimizer=opt) net.dataset.get("cifar10") net.dashboard() net.dataset.slice(10) net.dataset.shuffle() net.dataset.split(.5) net.train() net.propagate(net.dataset.inputs[0])
from conx import Network, Layer, SGD net = Network("XOR2") net.add(Layer("input1", 2)) net.add(Layer("input2", 2)) net.add(Layer("hidden1", 2, activation="sigmoid")) net.add(Layer("hidden2", 2, activation="sigmoid")) net.add(Layer("shared-hidden", 2, activation="sigmoid")) net.add(Layer("output1", 2, activation="sigmoid")) net.add(Layer("output2", 2, activation="sigmoid")) net.connect("input1", "hidden1") net.connect("input2", "hidden2") net.connect("hidden1", "shared-hidden") net.connect("hidden2", "shared-hidden") net.connect("shared-hidden", "output1") net.connect("shared-hidden", "output2") net.compile(loss='mean_squared_error', optimizer=SGD(lr=0.3, momentum=0.9)) ds = [([[0, 0], [0, 0]], [[0, 0], [0, 0]]), ([[0, 0], [1, 1]], [[1, 1], [1, 1]]), ([[1, 1], [0, 0]], [[1, 1], [1, 1]]), ([[1, 1], [1, 1]], [[0, 0], [0, 0]])] net.dataset.load(ds) net.train(2000, report_rate=10, accuracy=1) net.test()
def test_cifar10(): """ Test the cifar10 API and training. """ from conx import Network, Layer, Conv2DLayer, MaxPool2DLayer, FlattenLayer batch_size = 32 num_classes = 10 epochs = 200 data_augmentation = True num_predictions = 20 net = Network("CIRAR10") net.add(Layer("input", (32, 32, 3))) net.add(Conv2DLayer("conv1", 32, (3, 3), padding='same', activation='relu')) net.add(Conv2DLayer("conv2", 32, (3, 3), activation='relu')) net.add(MaxPool2DLayer("pool1", pool_size=(2, 2), dropout=0.25)) net.add(Conv2DLayer("conv3", 64, (3, 3), padding='same', activation='relu')) net.add(Conv2DLayer("conv4", 64, (3, 3), activation='relu')) net.add(MaxPool2DLayer("pool2", pool_size=(2, 2), dropout=0.25)) net.add(FlattenLayer("flatten")) net.add(Layer("hidden1", 512, activation='relu', vshape=(16, 32), dropout=0.5)) net.add(Layer("output", num_classes, activation='softmax')) net.connect() # initiate RMSprop optimizer opt = RMSprop(lr=0.0001, decay=1e-6) net.compile(error='categorical_crossentropy', optimizer=opt) net.get_dataset("cifar10") widget = net.dashboard() widget.goto("begin") widget.goto("next") widget.goto("end") widget.goto("prev") widget.prop_one() net.dataset.slice(10) net.dataset.shuffle() net.dataset.split(.5) net.train(plot=False) net.propagate(net.dataset.inputs[0]) net.dataset.clear()