Beispiel #1
0
    def __getitem__(self, idx):
        data = copy.deepcopy(self.datalist[idx])
        img_id, img_path, img_shape, joint_cam, cam_param, mano_param = \
            data['img_id'], data['img_path'], data['img_shape'],  data['joint_cam'], data['cam_param'], data['mano_param']
        rot, flip = 0, 0

        # mano coordinates
        mano_mesh_cam, mano_joint_cam = self.get_mano_coord(mano_param, cam_param)
        mano_coord_cam = np.concatenate((mano_mesh_cam, mano_joint_cam))
        # cam -> image projection
        # focal, princpt = cam_param['focal'], cam_param['princpt']
        # joint_coord_img = cam2pixel(mano_joint_cam, focal, princpt)[:, :2]

        # root align cam mesh/joint
        mano_coord_cam = mano_coord_cam - mano_joint_cam[:1]
        mesh_coord_cam = mano_coord_cam[:self.vertex_num];
        joint_coord_cam = mano_coord_cam[self.vertex_num:];

        # use det
        det_data = self.datalist_pose2d_det[idx]
        assert img_id == det_data['img_id']
        joint_coord_img = det_data['img_joint']

        # make bbox
        bbox = get_bbox(joint_coord_img)
        bbox = process_bbox(bbox.copy())

        # aug
        joint_coord_img, trans = j2d_processing(joint_coord_img.copy(),
                                                (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]),
                                                bbox, rot, flip, None)
        #  -> 0~1
        joint_coord_img = joint_coord_img[:, :2]
        joint_coord_img /= np.array([[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]])

        # normalize loc&scale
        mean, std = np.mean(joint_coord_img, axis=0), np.std(joint_coord_img, axis=0)
        joint_coord_img = (joint_coord_img.copy() - mean) / std

        if cfg.MODEL.name == 'pose2mesh_net':
            # default valid
            mesh_valid = np.ones((len(mesh_coord_cam), 1), dtype=np.float32)
            reg_joint_valid = np.ones((len(joint_coord_cam), 1), dtype=np.float32)
            lift_joint_valid = np.ones((len(joint_coord_cam), 1), dtype=np.float32)

            inputs = {'pose2d': joint_coord_img}
            targets = {'mesh': mesh_coord_cam / 1000, 'lift_pose3d': joint_coord_cam, 'reg_pose3d': joint_coord_cam}
            meta = {'mesh_valid': mesh_valid, 'lift_pose3d_valid': lift_joint_valid, 'reg_pose3d_valid': reg_joint_valid}
            return inputs, targets, meta

        elif cfg.MODEL.name == 'posenet':
            # default valid
            joint_valid = np.ones((len(joint_coord_cam), 1), dtype=np.float32)
            return joint_coord_img, joint_coord_cam, joint_valid
Beispiel #2
0
    def __getitem__(self, idx):
        data = copy.deepcopy(self.datalist[idx])
        annot_id, img_id, img_path, img_shape = data['annot_id'], data['image_id'], data['img_path'], data['img_shape']
        cam_param, bbox, smpl_param = data['cam_param'].copy(), data['bbox'].copy(), data['smpl_param'].copy()
        rot, flip = 0, 0

        # Detection
        # detection_data = copy.deepcopy(self.datadict_pose2d_det[idx])
        # det_annot_id, det_joint_img_coco = detection_data['annotation_id'], np.array(detection_data['keypoints'], dtype=np.float32)
        detection_data = self.datadict_pose2d_det[annot_id]
        det_joint_img_coco = detection_data['img_joint']
        joint_img_coco = self.add_pelvis_and_neck(det_joint_img_coco)

        # smpl coordinates
        mesh_cam, joint_cam_smpl = self.get_smpl_coord(smpl_param)

        # regress h36m, coco cam joints
        joint_cam_coco, gt_joint_img_coco = self.get_coco_from_mesh(mesh_cam, cam_param)
        joint_cam_h36m = self.get_h36mJ_from_mesh(mesh_cam)

        # root relative camera coordinate
        mesh_cam = mesh_cam - joint_cam_h36m[:1]
        joint_cam_coco = joint_cam_coco - joint_cam_coco[-2:-1]
        joint_cam_h36m = joint_cam_h36m - joint_cam_h36m[:1]

        # make new bbox
        bbox = get_bbox(gt_joint_img_coco)
        bbox = process_bbox(bbox.copy())

        if cfg.DATASET.use_gt_input:
            joint_img_coco = gt_joint_img_coco

        # aug
        joint_img_coco, trans = j2d_processing(joint_img_coco.copy(), (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]),
                                               bbox, rot, flip, None)

        #  -> 0~1
        joint_img_coco = joint_img_coco[:, :2]
        joint_img_coco /= np.array([[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]])

        # normalize loc&scale
        mean, std = np.mean(joint_img_coco, axis=0), np.std(joint_img_coco, axis=0)
        joint_img_coco = (joint_img_coco.copy() - mean) / std

        if cfg.MODEL.name == 'pose2mesh_net':
            inputs = {'pose2d': joint_img_coco}
            targets = {'mesh': mesh_cam / 1000, 'reg_pose3d': joint_cam_h36m}
            meta = {'dummy': np.ones(1, dtype=np.float32)}

            return inputs, targets, meta

        elif cfg.MODEL.name == 'posenet':
            joint_valid = np.ones((len(joint_cam_coco), 1), dtype=np.float32)  # dummy
            return joint_img_coco, joint_cam_coco, joint_valid
Beispiel #3
0
def optimize_cam_param(project_net, joint_input, crop_size):
    bbox = get_bbox(joint_input)
    bbox1 = process_bbox(bbox.copy(), aspect_ratio=1.0, scale=1.25)
    bbox2 = process_bbox(bbox.copy())
    proj_target_joint_img, trans = j2d_processing(joint_input.copy(), (crop_size, crop_size), bbox1, 0, 0, None)
    joint_img, _ = j2d_processing(joint_input.copy(), (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]), bbox2, 0, 0, None)

    joint_img = joint_img[:, :2]
    joint_img /= np.array([[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]])
    mean, std = np.mean(joint_img, axis=0), np.std(joint_img, axis=0)
    joint_img = (joint_img.copy() - mean) / std
    joint_img = torch.Tensor(joint_img[None, :, :]).cuda()
    target_joint = torch.Tensor(proj_target_joint_img[None, :, :2]).cuda()

    # get optimization settings for projection
    criterion = nn.L1Loss()
    optimizer = optim.Adam(project_net.parameters(), lr=0.1)

    # estimate mesh, pose
    model.eval()
    pred_mesh, _ = model(joint_img)
    pred_mesh = pred_mesh[:, graph_perm_reverse[:mesh_model.face.max() + 1], :]
    pred_3d_joint = torch.matmul(joint_regressor, pred_mesh)

    out = {}
    # assume batch=1
    project_net.train()
    for j in range(0, 1500):
        # projection
        pred_2d_joint = project_net(pred_3d_joint.detach())

        loss = criterion(pred_2d_joint, target_joint[:, :17, :])
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if j == 500:
            for param_group in optimizer.param_groups:
                param_group['lr'] = 0.05
        if j == 1000:
            for param_group in optimizer.param_groups:
                param_group['lr'] = 0.001

    out['mesh'] = pred_mesh[0].detach().cpu().numpy()
    out['cam_param'] = project_net.cam_param[0].detach().cpu().numpy()
    out['bbox'] = bbox1

    out['target'] = proj_target_joint_img

    return out
Beispiel #4
0
    def __getitem__(self, idx):
        data = copy.deepcopy(self.datalist[idx])
        flip, rot = 0, 0

        aid, img_path, img_shape = data['aid'], data['img_path'], data[
            'img_shape']
        gt_joint_img_coco = data['joint_img']

        det_data = self.datalist_cocoj_det[idx]
        det_aid = det_data['aid']
        assert det_aid == aid, f"detection aid: {det_aid}, dataset aid: {aid} / det_aid type: {type(det_aid)}, aid type: {type(aid)}"
        det_img_coco = np.array(det_data['keypoints']).reshape(-1, 3)
        joint_img = self.add_pelvis_and_neck(det_img_coco)
        # vis_2d_joints(gt_joint_img, img_path, self.coco_skeleton, prefix=f"{img_path.split('/')[-1]}")

        bbox = get_bbox(joint_img)
        bbox1 = process_bbox(bbox.copy(), aspect_ratio=1.0, scale=1.25)
        bbox2 = process_bbox(bbox.copy())
        proj_target_joint_img, trans = j2d_processing(
            joint_img.copy(), (self.img_res, self.img_res), bbox1, rot, flip,
            None)

        joint_img, _ = j2d_processing(
            joint_img.copy(),
            (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]), bbox2, rot,
            flip, None)

        #  -> 0~1
        joint_img = joint_img[:, :2]
        joint_img /= np.array(
            [[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]])

        # normalize loc&scale
        mean, std = np.mean(joint_img, axis=0), np.std(joint_img, axis=0)
        joint_img = (joint_img.copy() - mean) / std

        return joint_img[:, :2], proj_target_joint_img[:, :2], img_path, trans
Beispiel #5
0
    def __getitem__(self, idx):
        data = copy.deepcopy(self.datalist[idx])
        img_id, img_name, cam_param, bbox, smpl_param, img_shape = data[
            'img_id'], data['img_name'], data['cam_param'], data['bbox'], data[
                'smpl_param'], data['img_shape']
        flip, rot = augm_params(is_train=(self.data_split == 'train'))

        # smpl coordinates
        smpl_mesh_coord_cam, smpl_joint_coord_cam = self.get_smpl_coord(
            smpl_param)
        smpl_coord_cam = np.concatenate(
            (smpl_mesh_coord_cam, smpl_joint_coord_cam))
        smpl_coord_img = cam2pixel(smpl_coord_cam, cam_param['focal'],
                                   cam_param['princpt'])
        joint_coord_img = smpl_coord_img[self.smpl_vertex_num:][:, :2]

        # vis_2d_pose(joint_coord_img, img_path, self.smpl_skeleton, prefix='gt')

        # root relative cam coord
        smpl_coord_cam = smpl_coord_cam - smpl_coord_cam[
            self.smpl_vertex_num + self.smpl_root_joint_idx]
        mesh_coord_cam = smpl_coord_cam[:self.smpl_vertex_num]
        joint_coord_cam = smpl_coord_cam[self.smpl_vertex_num:]

        if not cfg.DATASET.use_gt_input:
            # train / test with 2d dection input
            det_data = self.datalist_pose2d_det[idx]
            assert img_id == det_data['img_id']
            joint_coord_img = det_data['img_joint']

        # vis_2d_pose(joint_coord_img, img_path, self.smpl_skeleton, prefix='det')
        # vis_3d_pose(joint_coord_cam, self.smpl_skeleton, joint_set_name='smpl')

        # make new bbox
        bbox = get_bbox(joint_coord_img)
        bbox = process_bbox(bbox.copy())

        # aug
        joint_coord_img, trans = j2d_processing(
            joint_coord_img.copy(),
            (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]), bbox, rot,
            flip, self.flip_pairs)
        joint_coord_cam = j3d_processing(joint_coord_cam, rot, flip,
                                         self.flip_pairs)

        #  -> 0~1
        joint_coord_img = joint_coord_img[:, :2]
        joint_coord_img /= np.array(
            [[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]])

        # normalize loc&scale
        mean, std = np.mean(joint_coord_img, axis=0), np.std(joint_coord_img,
                                                             axis=0)
        joint_coord_img = (joint_coord_img.copy() - mean) / std

        if cfg.MODEL.name == 'pose2mesh_net':
            # default valid
            mesh_valid = np.ones((len(mesh_coord_cam), 1), dtype=np.float32)
            reg_joint_valid = np.ones((len(joint_coord_cam), 1),
                                      dtype=np.float32)
            lift_joint_valid = np.ones((len(joint_coord_cam), 1),
                                       dtype=np.float32)

            inputs = {'pose2d': joint_coord_img}
            targets = {
                'mesh': mesh_coord_cam / 1000,
                'lift_pose3d': joint_coord_cam,
                'reg_pose3d': joint_coord_cam
            }
            meta = {
                'mesh_valid': mesh_valid,
                'lift_pose3d_valid': lift_joint_valid,
                'reg_pose3d_valid': reg_joint_valid
            }

        elif cfg.MODEL.name == 'posenet':
            # default valid
            joint_valid = np.ones((len(joint_coord_cam), 1), dtype=np.float32)
            return joint_coord_img, joint_coord_cam, joint_valid

        return inputs, targets, meta
Beispiel #6
0
    def __getitem__(self, idx):
        data = copy.deepcopy(self.datalist[idx])
        flip, rot = augm_params(is_train=(self.data_split == 'train'))

        # get smpl mesh, joints
        smpl_param, cam_param, img_shape = data['smpl_param'], data[
            'cam_param'], data['img_shape']
        mesh_cam, joint_cam_smpl = self.get_smpl_coord(smpl_param, cam_param)

        # regress coco joints
        joint_cam_h36m, joint_img_h36m = self.get_joints_from_mesh(
            mesh_cam, 'human36', cam_param)
        joint_cam_coco, joint_img_coco = self.get_joints_from_mesh(
            mesh_cam, 'coco', cam_param)
        # debug vis
        # vis_3d_pose(joint_cam_coco, self.coco_skeleton, joint_set_name='coco', prefix=f'coco_joint_cam_{idx}')
        # img = np.zeros((int(img_shape[0]), int(img_shape[1]), 3))
        # vis_2d_pose(joint_img_coco, img, self.coco_skeleton, prefix='coco joint img')

        # root relative camera coordinate
        mesh_cam = mesh_cam - joint_cam_h36m[:1]
        joint_cam_coco = joint_cam_coco - joint_cam_coco[-2:-1]
        joint_cam_h36m = joint_cam_h36m - joint_cam_h36m[:1]

        # joint_cam is PoseNet target
        if self.input_joint_name == 'coco':
            joint_img, joint_cam = joint_img_coco, joint_cam_coco
        elif self.input_joint_name == 'human36':
            joint_img, joint_cam = joint_img_h36m, joint_cam_h36m

        # make new bbox
        tight_bbox = get_bbox(joint_img)
        bbox = process_bbox(tight_bbox.copy())

        # aug
        joint_img, trans = j2d_processing(
            joint_img.copy(),
            (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]), bbox, rot, 0,
            None)
        if not cfg.DATASET.use_gt_input:
            joint_img = self.replace_joint_img(joint_img, tight_bbox, trans)
        if flip:
            joint_img = flip_2d_joint(joint_img, cfg.MODEL.input_shape[1],
                                      self.flip_pairs)
        joint_cam = j3d_processing(joint_cam, rot, flip, self.flip_pairs)

        #  -> 0~1
        joint_img = joint_img[:, :2]
        joint_img /= np.array(
            [[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]])

        # normalize loc&scale
        mean, std = np.mean(joint_img, axis=0), np.std(joint_img, axis=0)
        joint_img = (joint_img.copy() - mean) / std

        if cfg.MODEL.name == 'pose2mesh_net':
            # default valid
            mesh_valid = np.ones((len(mesh_cam), 1), dtype=np.float32)
            reg_joint_valid = np.ones((len(joint_cam_h36m), 1),
                                      dtype=np.float32)
            lift_joint_valid = np.ones((len(joint_cam), 1), dtype=np.float32)

            inputs = {'pose2d': joint_img}
            targets = {
                'mesh': mesh_cam / 1000,
                'lift_pose3d': joint_cam,
                'reg_pose3d': joint_cam_h36m
            }
            meta = {
                'mesh_valid': mesh_valid,
                'lift_pose3d_valid': lift_joint_valid,
                'reg_pose3d_valid': reg_joint_valid
            }

            return inputs, targets, meta

        elif cfg.MODEL.name == 'posenet':
            # default valid
            joint_valid = np.ones((len(joint_cam), 1), dtype=np.float32)
            return joint_img, joint_cam, joint_valid
Beispiel #7
0
    def __getitem__(self, idx):
        data = copy.deepcopy(self.datalist[idx])
        annot_id, img_id, img_path, img_shape = data['annot_id'], data[
            'image_id'], data['img_path'], data['img_shape']
        cam_param, bbox, smpl_param = data['cam_param'].copy(
        ), data['bbox'].copy(), data['smpl_param'].copy()
        rot, flip = 0, 0

        # get coco img joints from detection
        joint_img_coco = data['pred_pose2d']
        # vis
        # img = cv2.imread(img_path)
        # vis_2d_pose(joint_img_coco, img, self.coco_skeleton, prefix='vis2dpose', bbox=None)
        # import pdb; pdb.set_trace()

        # smpl coordinates
        mesh_cam, joint_cam_smpl = self.get_smpl_coord(smpl_param)

        # regress h36m, coco cam joints
        joint_cam_coco, gt_joint_img_coco = self.get_coco_from_mesh(
            mesh_cam, cam_param)
        joint_cam_h36m = self.get_h36mJ_from_mesh(mesh_cam)

        # root relative camera coordinate
        mesh_cam = mesh_cam - joint_cam_h36m[:1]
        joint_cam_coco = joint_cam_coco - joint_cam_coco[-2:-1]
        joint_cam_h36m = joint_cam_h36m - joint_cam_h36m[:1]

        if cfg.DATASET.use_gt_input:
            joint_img_coco = gt_joint_img_coco

        # make new bbox
        bbox = get_bbox(joint_img_coco)
        bbox = process_bbox(bbox.copy())

        # aug
        joint_img_coco, trans = j2d_processing(
            joint_img_coco.copy(),
            (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]), bbox, rot,
            flip, None)

        #  -> 0~1
        joint_img_coco = joint_img_coco[:, :2]
        joint_img_coco /= np.array(
            [[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]])

        # normalize loc&scale
        mean, std = np.mean(joint_img_coco, axis=0), np.std(joint_img_coco,
                                                            axis=0)
        joint_img_coco = (joint_img_coco.copy() - mean) / std

        if cfg.MODEL.name == 'pose2mesh_net':
            inputs = {'pose2d': joint_img_coco}
            targets = {'mesh': mesh_cam / 1000, 'reg_pose3d': joint_cam_h36m}
            meta = {'dummy': np.ones(1, dtype=np.float32)}

            return inputs, targets, meta

        elif cfg.MODEL.name == 'posenet':
            joint_valid = np.ones((len(joint_cam_coco), 1),
                                  dtype=np.float32)  # dummy
            return joint_img_coco, joint_cam_coco, joint_valid
Beispiel #8
0
    def __getitem__(self, idx):
        data = copy.deepcopy(self.datalist[idx])
        img_id, bbox, smpl_param, cam_param, img_shape = data['img_id'], data['bbox'].copy(), data['smpl_param'].copy(), data['cam_param'].copy(), data['img_hw']
        flip, rot = augm_params(is_train=(self.data_split == 'train'))

        # smpl coordinates
        mesh_cam, joint_cam_smpl = self.get_smpl_coord(smpl_param, cam_param)

        # regress coco joints
        joint_cam_coco, joint_img_coco = self.get_coco_from_mesh(mesh_cam, cam_param)
        # h36m joints from datasets
        joint_cam_h36m, joint_img_h36m = data['joint_cam'], data['joint_img'][:, :2]

        # root relative camera coordinate
        mesh_cam = mesh_cam - joint_cam_h36m[:1]
        # joint_cam_smpl = joint_cam_smpl - joint_cam_h36m[:1]
        joint_cam_coco = joint_cam_coco - joint_cam_coco[-2:-1]
        joint_cam_h36m = joint_cam_h36m - joint_cam_h36m[:1]

        # joint_cam is PoseNet target
        if self.input_joint_name == 'coco':
            joint_img, joint_cam = joint_img_coco, joint_cam_coco
        elif self.input_joint_name == 'human36':
            joint_img, joint_cam = joint_img_h36m, joint_cam_h36m

        # make new bbox
        bbox = get_bbox(joint_img)
        bbox = process_bbox(bbox.copy())

        # aug
        joint_img, trans = j2d_processing(joint_img.copy(), (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]),
                                          bbox, rot, flip, self.flip_pairs)
        joint_cam = j3d_processing(joint_cam, rot, flip, self.flip_pairs)

        if not cfg.DATASET.use_gt_input:
            joint_img = self.replace_joint_img(idx, img_id, joint_img, bbox, trans)

        # vis
        # img = cv2.imread(img_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
        # new_img = cv2.warpAffine(img, trans, (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]), flags=cv2.INTER_LINEAR)
        # vis_2d_pose(joint_img, new_img, self.human36_skeleton, prefix='detection')
        # vis_3d_pose(joint_cam, self.human36_skeleton, joint_set_name='human36', gt=True)

        #  -> 0~1
        joint_img = joint_img[:, :2]
        joint_img /= np.array([[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]])

        # normalize loc&scale
        mean, std = np.mean(joint_img, axis=0), np.std(joint_img, axis=0)
        joint_img = (joint_img.copy() - mean) / std

        if cfg.MODEL.name == 'pose2mesh_net':
            # default valid
            mesh_valid = np.ones((len(mesh_cam), 1), dtype=np.float32)
            reg_joint_valid = np.ones((len(joint_cam_h36m), 1), dtype=np.float32)
            lift_joint_valid = np.ones((len(joint_cam), 1), dtype=np.float32)
            # if fitted mesh is too far from h36m gt, discard it
            error = self.get_fitting_error(joint_cam_h36m, mesh_cam)
            if error > self.fitting_thr:
                mesh_valid[:] = 0
                if self.input_joint_name == 'coco':
                    lift_joint_valid[:] = 0

            inputs = {'pose2d': joint_img}
            targets = {'mesh': mesh_cam / 1000, 'lift_pose3d': joint_cam, 'reg_pose3d': joint_cam_h36m}
            meta = {'mesh_valid': mesh_valid, 'lift_pose3d_valid': lift_joint_valid, 'reg_pose3d_valid': reg_joint_valid}

            return inputs, targets, meta

        elif cfg.MODEL.name == 'posenet':
            # default valid
            joint_valid = np.ones((len(joint_cam), 1), dtype=np.float32)
            # if fitted mesh is too far from h36m gt, discard it
            error = self.get_fitting_error(joint_cam_h36m, mesh_cam)
            if (error > self.fitting_thr) and (self.input_joint_name == 'coco'):
                joint_valid[:] = 0

            return joint_img, joint_cam, joint_valid
Beispiel #9
0
    def __getitem__(self, idx):
        data = copy.deepcopy(self.datalist[idx])
        img_shape, bbox, dp_data, smplify_result = data['img_shape'], data[
            'bbox'], data['dp_data'], data['smplify_result']
        flip, rot = augm_params(is_train=(self.data_split == 'train'))
        # img_name = img_path.split('/')[-1][:-4]

        smpl_param, cam_param = smplify_result['smpl_param'], smplify_result[
            'cam_param']
        # regress h36m, coco joints
        mesh_cam, joint_cam_smpl = self.get_smpl_coord(smpl_param)
        joint_cam_h36m, joint_img_h36m = self.get_joints_from_mesh(
            mesh_cam, 'human36', cam_param)
        joint_cam_coco, joint_img_coco = self.get_joints_from_mesh(
            mesh_cam, 'coco', cam_param)
        # vis_2d_pose(joint_img_h36m, img_path, self.human36_skeleton, prefix='h36m joint')
        # vis_2d_pose(joint_img_coco, img_path, self.coco_skeleton, prefix='coco joint')
        # vis_3d_pose(joint_cam_h36m, self.human36_skeleton, 'human36', gt=True)

        # root relative camera coordinate
        mesh_cam = mesh_cam - joint_cam_h36m[:1]
        joint_cam_coco = joint_cam_coco - joint_cam_coco[-2:-1]
        joint_cam_h36m = joint_cam_h36m - joint_cam_h36m[:1]

        if self.input_joint_name == 'coco':
            joint_img, joint_cam = joint_img_coco, joint_cam_coco
        elif self.input_joint_name == 'human36':
            joint_img, joint_cam = joint_img_h36m, joint_cam_h36m

        # make new bbox
        tight_bbox = get_bbox(joint_img)
        bbox = process_bbox(tight_bbox.copy())

        # aug
        joint_img, trans = j2d_processing(
            joint_img.copy(),
            (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]), bbox, rot, 0,
            None)
        if not cfg.DATASET.use_gt_input:
            joint_img = self.replace_joint_img(joint_img, tight_bbox, trans)
        if flip:
            joint_img = flip_2d_joint(joint_img, cfg.MODEL.input_shape[1],
                                      self.flip_pairs)
        joint_cam = j3d_processing(joint_cam, rot, flip, self.flip_pairs)

        #  -> 0~1
        joint_img = joint_img[:, :2]
        joint_img /= np.array(
            [[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]])

        # normalize loc&scale
        mean, std = np.mean(joint_img, axis=0), np.std(joint_img, axis=0)
        joint_img = (joint_img.copy() - mean) / std

        if cfg.MODEL.name == 'pose2mesh_net':
            # default valid
            mesh_valid = np.ones((len(mesh_cam), 1), dtype=np.float32)
            reg_joint_valid = np.ones((len(joint_cam_h36m), 1),
                                      dtype=np.float32)
            lift_joint_valid = np.ones((len(joint_cam), 1), dtype=np.float32)
            error = self.get_fitting_error(tight_bbox, data['joint_img'],
                                           joint_img_coco[:17],
                                           data['joint_valid'])
            if error > self.fitting_thr:
                mesh_valid[:], reg_joint_valid[:], lift_joint_valid[:] = 0, 0, 0

            inputs = {'pose2d': joint_img}
            targets = {
                'mesh': mesh_cam / 1000,
                'lift_pose3d': joint_cam,
                'reg_pose3d': joint_cam_h36m
            }
            meta = {
                'mesh_valid': mesh_valid,
                'lift_pose3d_valid': lift_joint_valid,
                'reg_pose3d_valid': reg_joint_valid
            }

            return inputs, targets, meta

        elif cfg.MODEL.name == 'posenet':
            # default valid
            joint_valid = np.ones((len(joint_cam), 1), dtype=np.float32)
            # compute fitting error
            error = self.get_fitting_error(tight_bbox, data['joint_img'],
                                           joint_img_coco[:17],
                                           data['joint_valid'])
            if error > self.fitting_thr:
                joint_valid[:, :] = 0

            return joint_img, joint_cam, joint_valid
    cfg.MODEL.posenet_pretrained = False

    # get model and input
    if joint_set == 'mano':
        mesh_model = MANO()
    else:
        mesh_model = SMPL()
    model, joint_regressor, joint_num, skeleton, graph_L, graph_perm_reverse = get_joint_setting(
        mesh_model, joint_category=joint_set)
    model = model.cuda()
    project_net = models.project_net.get_model().cuda()
    joint_regressor = torch.Tensor(joint_regressor).cuda()
    joint_input = np.load(input_path)

    # pre-process input
    bbox = get_bbox(joint_input)
    bbox1 = process_bbox(bbox.copy(), aspect_ratio=1.0, scale=1.25)
    bbox2 = process_bbox(bbox.copy())
    proj_target_joint_img, trans = j2d_processing(joint_input.copy(),
                                                  (IMG_RES, IMG_RES), bbox1, 0,
                                                  0, None)
    joint_img, _ = j2d_processing(
        joint_input.copy(),
        (cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]), bbox2, 0, 0,
        None)

    joint_img = joint_img[:, :2]
    joint_img /= np.array(
        [[cfg.MODEL.input_shape[1], cfg.MODEL.input_shape[0]]])
    mean, std = np.mean(joint_img, axis=0), np.std(joint_img, axis=0)
    joint_img = (joint_img.copy() - mean) / std