Beispiel #1
0
    conf, preds = preds.max(2)

    preds = preds.transpose(1, 0).contiguous().view(-1)
    preds_size = Variable(torch.IntTensor([preds.size(0)]))
    # raw_pred = converter.decode(preds.data, preds_size.data, raw=True)
    sim_pred = converter.decode(preds.data, preds_size.data, raw=False)
    return sim_pred


if __name__ == '__main__':
    model_path = './weights/CRNN-0627-crop_48_901.pth'
    gpu = True
    if not torch.cuda.is_available():
        gpu = False

    model = crnn.CRNN(config.imgH, 1, len(alphabet) + 1, 256)
    if gpu:
        model = model.cuda()
    print('loading pretrained model from %s' % model_path)

    if gpu:
        model.load_state_dict(torch.load(model_path))
    else:
        model.load_state_dict(
            torch.load(model_path, map_location=lambda storage, loc: storage))

    if len(sys.argv) > 1 and 'train' in sys.argv[1]:
        infofile = 'data_set/infofile_updated_0627_train.txt'
        print(val_model(infofile, model, gpu, '0627_train.log'))
    elif len(sys.argv) > 1 and 'gen' in sys.argv[1]:
        infofile = 'data_set/infofile_0627_gen_test.txt'
Beispiel #2
0
criterion = CTCLoss(reduction='sum')
# criterion = CTCLoss()
best_acc = 0.9


# custom weights initialization called on crnn
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        m.weight.data.normal_(0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        m.weight.data.normal_(1.0, 0.02)
        m.bias.data.fill_(0)


crnn = crnn.CRNN(config.imgH, config.nc, config.nclass, config.nh)
if config.pretrained_model != '' and os.path.exists(config.pretrained_model):
    print('loading pretrained model from %s' % config.pretrained_model)
    crnn.load_state_dict(torch.load(config.pretrained_model))
else:
    crnn.apply(weights_init)
print(crnn)


# image = torch.FloatTensor(config.batchSize, 3, config.imgH, config.imgH)
# text = torch.IntTensor(config.batchSize * 5)
# length = torch.IntTensor(config.batchSize)
device = torch.device('cpu')
if config.cuda:
    crnn.cuda()
    # crnn = torch.nn.DataParallel(crnn, device_ids=range(opt.ngpu))
Beispiel #3
0
import core.utils
import core.keys
import core.dataset
import core.crnn
from PIL import Image
from torch.autograd import Variable

gpu = True
if not torch.cuda.is_available():
    gpu = False

model_path = 'CRNN-0618-10w_21_990.pth'
alphabet = keys.alphabet
imgH = config.imgH
imgW = config.imgW
model = crnn.CRNN(imgH, 1, len(alphabet) + 1, 256)
print('loading pretrained model from %s, alphabet.len=%d' % (model_path, len(alphabet)))

if gpu:
    model = model.cuda()
    model.load_state_dict( torch.load( model_path ) )
else:
    model.load_state_dict(torch.load(model_path,map_location=lambda storage,loc:storage))

converter = utils.strLabelConverter(alphabet)
transformer = mydataset.resizeNormalize((imgW, imgH),is_test=True)


def recognize_downline(img,crnn_model=model):
    img = cv2.cvtColor( img, cv2.COLOR_BGR2RGB )
    image = Image.fromarray(np.uint8(img)).convert('L')