Beispiel #1
0
def network_input( choice):
    parser         = Parser(int(choice))
    trainset       = dataset(parser, Config.Train_tfrecord, Config.BATCH_SIZE, shuffle=Config.SHUFFLE_SIZE)
    validset       = dataset(parser, Config.Valid_tfrecord, 1, shuffle=None)
    example        = tf.cond(is_training, lambda: trainset.get_next(), lambda: validset.get_next())
    images, y_true = example
    return images, y_true
Beispiel #2
0
def load_train_val_data(train_path, val_path):
    parser_train = Parser(ANCHORS, NUM_CLASSES, image_size=(416, 416))
    parser_test = Parser(ANCHORS, NUM_CLASSES)
    trainset = dataset(parser_train,
                       train_path,
                       BATCH_SIZE,
                       shuffle=SHUFFLE_SIZE,
                       multi_image_size=False)
    testset = dataset(parser_test, val_path, BATCH_SIZE, shuffle=None)
    return trainset, testset
Beispiel #3
0
    def show_example(self):
        sess = tf.Session()
        classes = os.listdir(self.source_dir[:-len(".tfrecords") or None])

        train_tfrecord = self.source_dir
        anchors = utils.get_anchors(self.anchor_dir, self.img_h, self.img_w)

        parser = Parser(image_h=self.img_h,
                        image_w=self.img_w,
                        anchors=anchors,
                        num_classes=self.num_classes,
                        cell_size=self.cell_size,
                        debug=True)
        trainset = dataset(parser, train_tfrecord, 1, shuffle=1)

        is_training = tf.placeholder(tf.bool)
        example = trainset.get_next()

        image, boxes = sess.run(example)
        image, boxes = image[0], boxes[0]

        n_box = len(boxes)
        print(boxes)
        image = np.repeat(image, 3, axis=2)
        for i in range(n_box):
            image = cv2.rectangle(
                image, (int(float(boxes[i][0])), int(float(boxes[i][1]))),
                (int(float(boxes[i][2])), int(float(boxes[i][3]))),
                (255, 0, 0), 1)
            label = str(int(float(boxes[i][4])))
            image = cv2.putText(
                image, label,
                (int(float(boxes[i][0])), int(float(boxes[i][1]))),
                cv2.FONT_HERSHEY_SIMPLEX, .6, (0, 255, 0), 1, 2)

        image = Image.fromarray(np.uint8(image * 255))
        image.show()
Beispiel #4
0
BATCH_SIZE       = 8
STEPS            = 25000
LR               = 0.001 # if Nan, set 0.0005, 0.0001
DECAY_STEPS      = 100
DECAY_RATE       = 0.9
SHUFFLE_SIZE     = 200
CLASSES          = utils.read_coco_names(class_name_path)
ANCHORS          = utils.get_anchors('data/voc_anchors.txt', IMAGE_H, IMAGE_W)
NUM_CLASSES      = len(CLASSES)
EVAL_INTERNAL    = 100
SAVE_INTERNAL    = 500



parser   = Parser(IMAGE_H, IMAGE_W, ANCHORS, NUM_CLASSES)
trainset = dataset(parser, train_tfrecord, BATCH_SIZE, shuffle=SHUFFLE_SIZE)
testset  = dataset(parser, test_tfrecord , BATCH_SIZE, shuffle=None)

is_training = tf.placeholder(tf.bool)
example = tf.cond(is_training, lambda: trainset.get_next(), lambda: testset.get_next())

images, *y_true = example
model = yolov3.yolov3(NUM_CLASSES, ANCHORS)

with tf.variable_scope('yolov3'):
    pred_feature_map = model.forward(images, is_training=is_training)
    loss             = model.compute_loss(pred_feature_map, y_true)
    y_pred           = model.predict(pred_feature_map)

tf.summary.scalar("loss/coord_loss",   loss[1])
tf.summary.scalar("loss/sizes_loss",   loss[2])
import tensorflow as tf
from core import utils
from PIL import Image
from core.dataset import Parser, dataset
sess = tf.Session()

BATCH_SIZE = 1
SHUFFLE_SIZE = 1
CLASSES = utils.read_coco_names('./data/class.names')
ANCHORS = utils.get_anchors('./data/anchors.txt')
NUM_CLASSES = len(CLASSES)
TRAIN_TFRECORD = "./data/train_data/val.tfrecords"
TEST_TFRECORD = "./data/val_data/val.tfrecords"
parser_train = Parser(ANCHORS, NUM_CLASSES)
parser_test = Parser(ANCHORS, NUM_CLASSES)
trainset = dataset(parser_train, TRAIN_TFRECORD, BATCH_SIZE, shuffle=SHUFFLE_SIZE, multi_image_size=False)
testset = dataset(parser_test, TEST_TFRECORD, BATCH_SIZE, shuffle=None)
is_training = tf.placeholder(tf.bool)
example = testset.get_next()

for l in range(1):
    res = sess.run(example)
    image = res[0][0] * 255
    y_true = res[1:]
    boxes = utils.decode_gtbox(y_true)
    n_box = len(boxes)
    for i in range(n_box):
        image = cv2.rectangle(image,(int(float(boxes[i][0])),
                                     int(float(boxes[i][1]))),
                                    (int(float(boxes[i][2])),
                                     int(float(boxes[i][3]))), (255,0,0), 1)
CLASSES = utils.read_coco_names('./data/raccoon.names')
NUM_CLASSES = len(CLASSES)
ANCHORS = utils.get_anchors('./data/raccoon_anchors.txt', IMAGE_H, IMAGE_W)
CKPT_FILE = "./checkpoint/yolov3.ckpt-2500"
IOU_THRESH = 0.5
SCORE_THRESH = 0.3

all_detections = []
all_annotations = []
all_aver_precs = {CLASSES[i]: 0. for i in range(NUM_CLASSES)}

test_tfrecord = "./raccoon_dataset/raccoon_*.tfrecords"
parser = Parser(IMAGE_H, IMAGE_W, ANCHORS, NUM_CLASSES)
testset = dataset(parser,
                  test_tfrecord,
                  batch_size=1,
                  shuffle=None,
                  repeat=False)

images_tensor, *y_true_tensor = testset.get_next()
model = yolov3.yolov3(NUM_CLASSES, ANCHORS)
with tf.variable_scope('yolov3'):
    pred_feature_map = model.forward(images_tensor, is_training=False)
    y_pred_tensor = model.predict(pred_feature_map)

saver = tf.train.Saver()
saver.restore(sess, CKPT_FILE)

try:
    image_idx = 0
    while True:
LR = 0.0001  # if Nan, set 0.0005, 0.0001
DECAY_STEPS = 100
DECAY_RATE = 0.9
SHUFFLE_SIZE = 45  # 这个要根据输入的训练图片数量进行修改!!!
CLASSES = utils.read_coco_names('../data/object.names')
ANCHORS = utils.get_anchors('../data/object_anchors.txt', IMAGE_H, IMAGE_W)
NUM_CLASSES = len(CLASSES)
EVAL_INTERNAL = 1
SAVE_INTERNAL = 1

# 在一个计算图开始前,将文件读入到queue中,TFRecord可以格式统一管理存储数据
train_tfrecord = "../data/images_train.tfrecords"
test_tfrecord = "../data/images_test.tfrecords"

parser = Parser(IMAGE_H, IMAGE_W, ANCHORS, NUM_CLASSES)
trainset = dataset(parser, train_tfrecord, batch_size=BATCH_SIZE, shuffle=SHUFFLE_SIZE)
testset = dataset(parser, test_tfrecord, batch_size=BATCH_SIZE, shuffle=None)  # 这里我用全部测试集来训练,方便看效果


is_training = tf.placeholder(tf.bool)  # 占位符,运行时必须传入值

# 根据是is_training判断是不是在训练,然后调用trainset或者testset的get_next
example = tf.cond(is_training, lambda: trainset.get_next(), lambda: testset.get_next())


# y_true = [feature_map_1 , feature_map_2 , feature_map_3]
images, *y_true = example  # a,*c = 1,2,3,4   a=1, c = [2,3,4]
model = YOLOv3.yolov3(NUM_CLASSES, ANCHORS)


with tf.variable_scope('yolov3'):
Beispiel #8
0
NUM_CLASSES = len(CLASSES)
CLASS_WEIGHTS = np.ones(NUM_CLASSES, dtype='float32')
TRUE_BOX_BUFFER = 20

tfrecord = "./test_data/train0003.tfrecords"
sess = tf.Session()

parser = parser(IMAGE_H,
                IMAGE_W,
                GRID_H,
                GRID_W,
                ANCHORS,
                NUM_CLASSES,
                DEBUG=True)

trainset = dataset(parser, tfrecord, BATCH_SIZE, shuffle=1)

example = trainset.get_next()

for l in range(2):
    image, boxes = sess.run(example)
    image, boxes = image[0], boxes[0]

    n_box = len(boxes)
    for i in range(n_box):
        image = cv2.rectangle(
            image, (int(float(boxes[i][0])), int(float(boxes[i][1]))),
            (int(float(boxes[i][2])), int(float(boxes[i][3]))), (255, 0, 0), 1)

    image = Image.fromarray(np.uint8(image))
    image.show()
Beispiel #9
0
import tensorflow as tf
from core import utils, yolov3
from core.dataset import dataset, Parser
from PIL import Image
sess = tf.Session()

IMAGE_H, IMAGE_W = 416, 416
BATCH_SIZE = 1
SHUFFLE_SIZE = 200
CLASSES = utils.read_coco_names("data/SVHN/SVHN.names")
ANCHORS = utils.get_anchors("data/SVHN/SVHN_anchors.txt", IMAGE_H, IMAGE_W)
NUM_CLASSES = len(CLASSES)
test_tfrecord = "data/SVHN/tfrecords/quick_test_data.tfrecords"

parser = Parser(IMAGE_H, IMAGE_W, ANCHORS, NUM_CLASSES)
testset = dataset(parser, test_tfrecord, BATCH_SIZE, shuffle=None)

is_training = tf.placeholder(tf.bool)
example = testset.get_next()

images, *y_true = example
model = yolov3.yolov3(NUM_CLASSES, ANCHORS)

with tf.variable_scope('yolov3'):
    pred_feature_map = model.forward(images, is_training=is_training)
    loss = model.compute_loss(pred_feature_map, y_true)
    y_pred = model.predict(pred_feature_map)

saver = tf.train.Saver()
saver.restore(sess, "data/SVHN/checkpoint5/yolov3.ckpt-4000")
Beispiel #10
0
    def train(self):
        ANCHORS = utils.get_anchors(self.anchors_path, self.img_h, self.img_w)

        parser = Parser(image_h=self.img_h,
                        image_w=self.img_w,
                        anchors=ANCHORS,
                        num_classes=self.num_classes)

        trainset = dataset(parser,
                           self.train_records,
                           self.batch_size,
                           shuffle=self.shuffle_size)
        testset = dataset(parser,
                          self.test_records,
                          self.batch_size,
                          shuffle=None)

        is_training = tf.placeholder(tf.bool)

        example = tf.cond(is_training, lambda: trainset.get_next(),
                          lambda: testset.get_next())

        images, y_true = example

        model = yolov3.yolov3(self.num_classes, ANCHORS)

        with tf.variable_scope('yolov3'):

            # Give the images to the network, and receive a prediction
            # feature map
            pred_feature_map = model.forward(images,
                                             is_training=is_training,
                                             n_filters_dn=self.n_filters_dn,
                                             n_strides_dn=self.n_strides_dn,
                                             n_ksizes_dn=self.n_ksizes_dn)

            loss = model.compute_loss(pred_feature_map, y_true,
                                      self.iou_threshold)
            y_pred = model.predict(pred_feature_map)

        tf.summary.scalar("loss/coord_loss", loss[1])
        tf.summary.scalar("loss/sizes_loss", loss[2])
        tf.summary.scalar("loss/confs_loss", loss[3])
        tf.summary.scalar("loss/class_loss", loss[4])

        global_step = tf.Variable(0,
                                  trainable=True,
                                  collections=[tf.GraphKeys.LOCAL_VARIABLES])

        write_op = tf.summary.merge_all()
        writer_train = tf.summary.FileWriter("../../data/train_summary",
                                             sess.graph)
        writer_test = tf.summary.FileWriter("../../data/test_summary")

        update_vars = tf.contrib.framework.get_variables_to_restore(
            include=["yolov3/yolo-v3"])

        lr = tf.train.exponential_decay(self.learning_rate,
                                        global_step,
                                        decay_steps=self.decay_steps,
                                        decay_rate=self.decay_rate,
                                        staircase=True)
        optimizer = tf.train.AdamOptimizer(lr)

        # set dependencies for BN ops
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            train_op = optimizer.minimize(loss[0],
                                          var_list=update_vars,
                                          global_step=global_step)

        sess.run([
            tf.global_variables_initializer(),
            tf.local_variables_initializer()
        ])

        saver = tf.train.Saver(max_to_keep=2)

        for step in range(self.steps):
            run_items = sess.run([train_op, write_op, y_pred, y_true] + loss,
                                 feed_dict={is_training: True})

            if (step + 1) % self.eval_internal == 0:
                train_rec_value, train_prec_value = utils.evaluate(
                    run_items[2], run_items[3])

            writer_train.add_summary(run_items[1], global_step=step)
            writer_train.flush()  # Flushes the event file to disk

            if (step + 1) % self.save_internal == 0:
                saver.save(sess,
                           save_path=self.checkpoint_path,
                           global_step=step + 1)

            if (step + 1) % self.print_every_n == 0:
                print(f"=> STEP {step+1} [TRAIN]:\tloss_xy: " +
                      f"{run_items[5]:.4f} \tloss_wh:{run_items[6]:.4f} \t" +
                      f"loss_conf:{run_items[7]:.4f} \tloss_class:" +
                      f"{run_items[8]:.4f}")

            run_items = sess.run([write_op, y_pred, y_true] + loss,
                                 feed_dict={is_training: False})

            if (step + 1) % self.eval_internal == 0:
                test_rec_value, test_prec_value = utils.evaluate(
                    run_items[1], run_items[2])
                print(f"\n{20*'='}> evaluation result <{20*'='}\n")
                print(f"=> STEP {step+1} [TRAIN]:\trecall:" +
                      f"{train_rec_value:.2f} \tprecision:" +
                      f"{train_prec_value:.4f}")
                print(f"=> STEP {step+1} [VALID]:\trecall:" +
                      f"{test_rec_value:.2f} \tprecision:" +
                      f"{test_prec_value:.4f}")
                print(f"\n{20*'='}> evaluation result <{20*'='}\n")

            writer_test.add_summary(run_items[0], global_step=step)
            writer_test.flush()  # Flushes the event file to disk
TRUE_BOX_BUFFER = 80

# test_tfrecord = "./test_data/train0003.tfrecords"
train_tfrecord = "../voc/train*.tfrecords"
val_tfrecord = "../voc/val*.tfrecords"
sess = tf.Session()
parser = parser(IMAGE_H,
                IMAGE_W,
                GRID_H,
                GRID_W,
                ANCHORS,
                NUM_CLASSES,
                TRUE_BOX_BUFFER,
                DEBUG=False)

trainset = dataset(parser, train_tfrecord, BATCH_SIZE, shuffle=1)
valset = dataset(parser, val_tfrecord, BATCH_SIZE, shuffle=None)

is_training = tf.placeholder(tf.bool)
example = tf.cond(is_training, lambda: trainset.get_next(),
                  lambda: valset.get_next())
input_image, y_true, true_boxes = example

feature_extractor = backbone.FullYoloFeature(input_image, is_training)
features = feature_extractor.feature

# ========================> method 1 <================================

# output = tf.keras.layers.Conv2D(NUM_ANCHORS * (5 + NUM_CLASSES),
# (1,1), strides=(1,1),
# padding='same',
Beispiel #12
0
def split_dataset_for_oldScene_KCV(args):
    data_dir = args.cur_data_dir
    num_negatives = args.num_negatives
    test_candidates_nums = args.test_candidates_nums
    kcv = args.kcv

    name = 'oldScene_neg{}_testCandi{}'.format(num_negatives,
                                               test_candidates_nums)
    result_root = os.path.join(data_dir, 'split_data_oldScene', name)
    mashup_api_list = meta_data(args).mashup_api_list
    mashup_api_dict = list2dict(mashup_api_list)

    # 返回K个数据对象,每个可以使用相关属性
    if os.path.exists(dataset(args, result_root, name,
                              kcv - 1).train_df_path):  # 已经划分过
        for i in range(kcv):
            print('has splited data in kcv mode before,read them!')
            data = dataset(args, result_root, name, i)
            data.initialize()  # 从文件中读取对象
            set_ds(data)  # 设置唯一实例
            yield data
    else:  # 还未划分过
        mashup_ids = list(mashup_api_dict.keys())
        all_apis = set(meta_data(args).api_df.index.tolist())  # 所有api的id

        # 首先为每个mashup指定确定的正负例,候选api等
        # {mid:api_instances}
        mid2true_instances, mid2false_instances, mid2candidate_instances = {}, {}, {}
        for mashup_id, api_ids in mashup_api_dict.items():  # api_ids是set
            unobserved_apis_list = list(all_apis - api_ids)
            random.shuffle(unobserved_apis_list)

            mid2true_instances[mashup_id] = {}
            mid2false_instances[mashup_id] = {}
            mid2candidate_instances[mashup_id] = {}

            api_ids_list = list(api_ids)  # 已选择的apis,做正例
            mid2true_instances[mashup_id] = api_ids_list

            all_neg_num = min(
                meta_data(args).api_num, num_negatives * len(api_ids_list))
            mid2false_instances[
                mashup_id] = unobserved_apis_list[:all_neg_num]  # 负例

            if test_candidates_nums == 'all':  # 选取全部api做测试
                mid2candidate_instances[mashup_id] = list(all_apis)
            else:  # 选取部分作为测试,实际组件api和部分unobserved
                test_candidates_nums = int(test_candidates_nums)
                mid2candidate_instances[
                    mashup_id] = api_ids_list + unobserved_apis_list[:
                                                                     test_candidates_nums]

        random.shuffle(mashup_ids)
        batch = len(mashup_ids) // kcv
        for i in range(kcv):  # 每个kcv
            start_index = i * batch
            batch_stopindex = len(mashup_ids) if i == kcv - 1 else (i +
                                                                    1) * batch
            test_mashups = mashup_ids[start_index:batch_stopindex]
            train_mashups = mashup_ids[:start_index] + mashup_ids[
                batch_stopindex:-1]

            train_df = pd.DataFrame(columns=['mashup', 'api', 'label'])
            for mashup_id in train_mashups:
                for true_api_id in mid2true_instances[mashup_id]:
                    train_df.append(
                        {
                            'mashup': mashup_id,
                            'api': true_api_id,
                            'label': 1
                        },
                        ignore_index=True)
                for false_api_id in mid2false_instances[mashup_id]:
                    train_df.append(
                        {
                            'mashup': mashup_id,
                            'api': false_api_id,
                            'label': 0
                        },
                        ignore_index=True)

            # test和train格式不同
            # test mashup和api的一行list是多个测试样本,而all_ground_api_ids,test_slt_ids的一行对应前者的一行
            test_df = pd.DataFrame(columns=[
                'mashup', 'slt_apis', 'candidate_apis', 'all_ground_api_ids'
            ])
            for mashup_id in test_mashups:
                test_df.append(
                    {
                        'mashup': mashup_id,
                        'candidate_apis': mid2candidate_instances[mashup_id],
                        'all_ground_api_ids': mid2true_instances[mashup_id]
                    },
                    ignore_index=True)

            data = dataset(args, result_root, name, i)
            data.initialize(train_df, test_df)
            set_ds(data)  # 设置唯一实例
            print('{}/{} dataset, build done!'.format(i, kcv))
            yield data
Beispiel #13
0
def split_dataset_for_newScene_KCV(args):
    """
    新场景划分数据
    :param data_dir: 要划分数据的路径
    :param num_negatives: 负采样比例
    :param slt_num: 指定的最大已选择服务的数目
    :param slt_combination_num: 真实组件服务中,只选取一部分组合作为已选服务,缓解数据不平衡问题: eg: C10/3 C50/3
    # :param train_positive_samples: 每个训练用的mashup,除了已选服务,剩下的保留多少个服务作为训练正例,防止组件太多的mashup所占的比例太大
    :param test_candidates_nums: 每个mashup要评价多少个待测负例item: 为all时全部评价
    :param kcv:
    :return: 某折的dataset对象
    """
    data_dir = args.cur_data_dir
    num_negatives = args.num_negatives
    slt_num = args.slt_item_num
    slt_combination_num = args.combination_num
    test_candidates_nums = args.test_candidates_nums
    kcv = args.kcv

    name = 'newScene_neg{}_sltNum{}_com{}_testCandi{}'.format(
        num_negatives, slt_num, slt_combination_num, test_candidates_nums)
    result_root = os.path.join(data_dir, 'split_data_newScene', name)

    # 返回K个dataset对象,每个可以使用相关属性
    if os.path.exists(dataset(args, result_root, name,
                              kcv - 1).train_df_path):  # 已经划分过
        for i in range(kcv):
            print('data has been splited in kcv mode before,read them!')
            data = dataset(args, result_root, name, i)
            data.initialize()  # 从文件中读取对象
            set_ds(data)  # 设置唯一实例
            yield data
    else:
        mashup_api_list = meta_data(args).mashup_api_list
        mashup_api_dict = list2dict(mashup_api_list)
        mashup_ids = meta_data(args).mashup_df.index.tolist()
        mashup_ids.remove(0)  # 占位
        all_apis = set(meta_data(args).api_df.index.tolist())  # 所有api的id
        all_apis.remove(0)

        # 1.首先为每个mashup指定已选服务和对应的正负例(训练)/待测api(测试)
        # {mid:{slt_aid_list:api_instances}
        mid2true_instances, mid2false_instances, mid2candidate_instances = {}, {}, {}
        for mashup_id, api_ids in mashup_api_dict.items():  # api_ids是set
            unobserved_apis_list = list(all_apis - api_ids)
            random.shuffle(unobserved_apis_list)

            mid2true_instances[mashup_id] = {}
            mid2false_instances[mashup_id] = {}
            mid2candidate_instances[mashup_id] = {}

            api_ids_list = list(api_ids)
            max_slt_num = min(slt_num,
                              len(api_ids_list) -
                              1)  # eg:最大需要三个已选服务,但是只有2个services构成
            for act_slt_num in range(max_slt_num):  # 选择1个时,两个时...
                act_slt_num += 1
                combinations = list(
                    itertools.combinations(api_ids_list, act_slt_num))
                if slt_combination_num != 'all':  # 只选取一部分组合,缓解数据不平衡问题
                    slt_combination_num = min(len(combinations),
                                              slt_combination_num)
                    combinations = combinations[:slt_combination_num]

                for slt_api_ids in combinations:  # 随机组合已选择的api,扩大数据量 # 组合产生,当做已选中的apis
                    train_api_ids = list(
                        api_ids - set(slt_api_ids)
                    )  # masked observed interaction 用于训练或测试的

                    # if train_positive_samples != 'all':  # 选择一部分正例 做训练或测试
                    #     train_positive_samples_num = min(len(train_api_ids), train_positive_samples) # 最多50个,一般没有那么多
                    #     train_api_ids = train_api_ids[:train_positive_samples_num]

                    mid2true_instances[mashup_id][
                        slt_api_ids] = train_api_ids  # 训练用正例 slt_api_ids是tuple

                    num_negative_instances = min(
                        num_negatives * len(train_api_ids),
                        len(unobserved_apis_list))
                    mid2false_instances[mashup_id][
                        slt_api_ids] = unobserved_apis_list[:
                                                            num_negative_instances]  # 随机选择的负例

                    if test_candidates_nums == 'all':  # 待预测
                        test_candidates_list = list(all_apis -
                                                    set(slt_api_ids))
                    else:
                        test_candidates_nums = int(test_candidates_nums)
                        test_candidates_list = unobserved_apis_list[:
                                                                    test_candidates_nums] + train_api_ids
                    mid2candidate_instances[mashup_id][
                        slt_api_ids] = test_candidates_list

        random.shuffle(mashup_ids)
        batch = len(mashup_ids) // kcv
        # 2.然后,根据上面的结果划分为各个KCV,训练和测试
        for i in range(kcv):  # 每个kcv
            start_index = i * batch
            batch_stopindex = len(mashup_ids) if i == kcv - 1 else (i +
                                                                    1) * batch
            test_mashups = mashup_ids[start_index:batch_stopindex]
            train_mashups = mashup_ids[:start_index] + mashup_ids[
                batch_stopindex:-1]
            print(train_mashups)
            print(test_mashups)

            train_df = pd.DataFrame(
                columns=['mashup', 'slt_apis', 'api', 'label'])
            for mashup_id in train_mashups:
                for slt_api_ids, true_api_instances in mid2true_instances[
                        mashup_id].items():
                    for true_api_id in true_api_instances:
                        train_df = train_df.append(
                            {
                                'mashup': mashup_id,
                                'slt_apis': slt_api_ids,
                                'api': true_api_id,
                                'label': 1
                            },
                            ignore_index=True)

                for slt_api_ids, false_api_instances in mid2false_instances[
                        mashup_id].items():
                    for false_api_id in false_api_instances:
                        train_df = train_df.append(
                            {
                                'mashup': mashup_id,
                                'slt_apis': slt_api_ids,
                                'api': false_api_id,
                                'label': 0
                            },
                            ignore_index=True)

            # test和train格式不同: train是一行一个样本; test的待测api太多,节省空间,一行:
            # 一个mashup,多个待测api,一份all_ground_api_ids,一份test_slt_ids
            test_df = pd.DataFrame(columns=[
                'mashup', 'slt_apis', 'candidate_apis', 'all_ground_api_ids'
            ])
            for mashup_id in test_mashups:
                for slt_api_ids, candidate_api_instances in mid2candidate_instances[
                        mashup_id].items():
                    test_df = test_df.append(
                        {
                            'mashup':
                            mashup_id,
                            'slt_apis':
                            slt_api_ids,
                            'candidate_apis':
                            candidate_api_instances,
                            'all_ground_api_ids':
                            mid2true_instances[mashup_id][slt_api_ids]
                        },
                        ignore_index=True)

            # 3.根据训练集和测试集的划分,初始化dataset对象!!!
            data = dataset(args, result_root, name, i)
            data.initialize(train_df, test_df)
            set_ds(data)  # 设置唯一实例
            print('{}/{} dataset, build done!'.format(i, kcv))
            yield data

    print('you have splited and saved them!')