def get_config(is_train):
    class General:
        log_frequency = 10
        name = __name__.rsplit("/")[-1].rsplit(".")[-1]
        batch_image = 2 if is_train else 1
        fp16 = False

    class KvstoreParam:
        kvstore = "nccl"
        batch_image = General.batch_image
        gpus = [0, 1, 2, 3, 4, 5, 6, 7]
        fp16 = General.fp16

    class NormalizeParam:
        normalizer = normalizer_factory(type="fixbn")

    class BackboneParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        depth = 50

    class NeckParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer

    class RpnParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        batch_image = General.batch_image

        class anchor_generate:
            scale = (8, )
            ratio = (0.5, 1.0, 2.0)
            stride = (4, 8, 16, 32, 64)
            image_anchor = 256

        class head:
            conv_channel = 256
            mean = (0, 0, 0, 0)
            std = (1, 1, 1, 1)

        class proposal:
            pre_nms_top_n = 2000 if is_train else 1000
            post_nms_top_n = 2000 if is_train else 1000
            nms_thr = 0.7
            min_bbox_side = 0

        class subsample_proposal:
            proposal_wo_gt = False
            image_roi = 512
            fg_fraction = 0.25
            fg_thr = 0.5
            bg_thr_hi = 0.5
            bg_thr_lo = 0.0

        class bbox_target:
            num_reg_class = 81
            class_agnostic = False
            weight = (1.0, 1.0, 1.0, 1.0)
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.1, 0.1, 0.2, 0.2)

    class BboxParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = 1 + 80
        image_roi = 512
        batch_image = General.batch_image

        class regress_target:
            class_agnostic = False
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.1, 0.1, 0.2, 0.2)

    class RoiParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        out_size = 7
        stride = (4, 8, 16, 32)
        roi_canonical_scale = 224
        roi_canonical_level = 4

    class KDParam:
        stage = 'c5'
        channel = 2048
        grad_scale = 5

    class DatasetParam:
        if is_train:
            image_set = ("coco_train2017", )
        else:
            image_set = ("coco_val2017", )

    backbone = Backbone(BackboneParam)
    neck = Neck(NeckParam)
    rpn_head = RpnHead(RpnParam)
    roi_extractor = RoiExtractor(RoiParam)
    bbox_head = BboxHead(BboxParam)
    kd_head = KDHead(KDParam)
    detector = Detector()
    if is_train:
        train_sym = detector.get_train_symbol(backbone, neck, rpn_head,
                                              roi_extractor, bbox_head,
                                              kd_head)
        rpn_test_sym = None
        test_sym = None
    else:
        train_sym = None
        rpn_test_sym = detector.get_rpn_test_symbol(backbone, neck, rpn_head)
        test_sym = detector.get_test_symbol(backbone, neck, rpn_head,
                                            roi_extractor, bbox_head)

    class ModelParam:
        train_symbol = train_sym
        test_symbol = test_sym
        rpn_test_symbol = rpn_test_sym

        from_scratch = False
        random = True
        memonger = False
        memonger_until = "stage3_unit21_plus"

        class pretrain:
            prefix = "pretrain_model/resnet%s_v1b" % BackboneParam.depth
            epoch = 0
            fixed_param = ["conv0", "stage1", "gamma", "beta"]

        class teacher_param:
            prefix = 'teacher_model/faster_r152v1b_fpn_2x/checkpoint'
            epoch = 12
            endpoint = ['stage4_unit3_relu_output']
            data_name = ['data']
            label_name = ['teacher_label']

    class OptimizeParam:
        class optimizer:
            type = "sgd"
            lr = 0.01 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
            momentum = 0.9
            wd = 0.0001
            clip_gradient = None

        class schedule:
            begin_epoch = 0
            end_epoch = 6
            lr_iter = [
                60000 * 16 //
                (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 80000 *
                16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)
            ]

        class warmup:
            type = "gradual"
            lr = 0.01 / 8 * len(
                KvstoreParam.gpus) * KvstoreParam.batch_image / 3.0
            iter = 500

    class TestParam:
        min_det_score = 0.05
        max_det_per_image = 100

        process_roidb = lambda x: x
        process_output = lambda x, y: x

        class model:
            prefix = "experiments/{}/checkpoint".format(General.name)
            epoch = OptimizeParam.schedule.end_epoch

        class nms:
            type = "nms"
            thr = 0.5

        class coco:
            annotation = "data/coco/annotations/instances_minival2014.json"

    # data processing
    class NormParam:
        mean = tuple(i * 255 for i in (0.485, 0.456, 0.406))  # RGB order
        std = tuple(i * 255 for i in (0.229, 0.224, 0.225))

    # data processing
    class ResizeParam:
        short = 800
        long = 1333

    class PadParam:
        short = 800
        long = 1333
        max_num_gt = 100

    class AnchorTarget2DParam:
        def __init__(self):
            self.generate = self._generate()

        class _generate:
            def __init__(self):
                self.stride = (4, 8, 16, 32, 64)
                self.short = (200, 100, 50, 25, 13)
                self.long = (334, 167, 84, 42, 21)

            scales = (8)
            aspects = (0.5, 1.0, 2.0)

        class assign:
            allowed_border = 0
            pos_thr = 0.7
            neg_thr = 0.3
            min_pos_thr = 0.0

        class sample:
            image_anchor = 256
            pos_fraction = 0.5

    class RenameParam:
        mapping = dict(image="data")


    from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
        ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
        RenameRecord, Norm2DImage

    from models.FPN.input import PyramidAnchorTarget2D

    if is_train:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            Flip2DImageBbox(),
            Pad2DImageBbox(PadParam),
            ConvertImageFromHwcToChw(),
            PyramidAnchorTarget2D(AnchorTarget2DParam()),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "gt_bbox"]
        label_name = ["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"]
    else:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "im_id", "rec_id"]
        label_name = []

    import core.detection_metric as metric

    rpn_acc_metric = metric.AccWithIgnore("RpnAcc", ["rpn_cls_loss_output"],
                                          ["rpn_cls_label"])
    rpn_l1_metric = metric.L1("RpnL1", ["rpn_reg_loss_output"],
                              ["rpn_cls_label"])
    # for bbox, the label is generated in network so it is an output
    box_acc_metric = metric.AccWithIgnore(
        "RcnnAcc", ["bbox_cls_loss_output", "bbox_label_blockgrad_output"], [])
    box_l1_metric = metric.L1(
        "RcnnL1", ["bbox_reg_loss_output", "bbox_label_blockgrad_output"], [])

    scalar_metric = metric.ScalarLoss("fitloss", ["fit_loss_output"], [])

    metric_list = [
        rpn_acc_metric, rpn_l1_metric, box_acc_metric, box_l1_metric,
        scalar_metric
    ]

    return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \
           ModelParam, OptimizeParam, TestParam, \
           transform, data_name, label_name, metric_list
Beispiel #2
0
def get_config(is_train):
    class General:
        log_frequency = 10
        name = __name__.rsplit("/")[-1].rsplit(".")[-1]
        batch_image = 2 if is_train else 1
        fp16 = True
        loader_worker = 24

    class KvstoreParam:
        kvstore = "nccl"
        batch_image = General.batch_image
        gpus = [0, 1, 2, 3, 4, 5, 6, 7]
        fp16 = General.fp16

    class NormalizeParam:
        normalizer = normalizer_factory(type="fixbn")

    class BackboneParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        depth = 50

    class NeckParam:
        fp16 = General.fp16
        normalizer = normalizer_factory(type="localbn")

    class RpnParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        batch_image = General.batch_image
        nnvm_proposal = True
        nnvm_rpn_target = False

        class anchor_generate:
            scale = (8, )
            ratio = (0.5, 1, 2)
            stride = (4, 8, 16, 32, 64)
            max_side = 1450

        class anchor_assign:
            allowed_border = 1000
            pos_thr = 0.7
            neg_thr = 0.3
            min_pos_thr = 0.0
            image_anchor = 256
            pos_fraction = 0.5

        class head:
            conv_channel = 256
            mean = (0, 0, 0, 0)
            std = (1, 1, 1, 1)

        class proposal:
            pre_nms_top_n = 3000 if is_train else 2000
            post_nms_top_n = 2000 if is_train else 1000
            nms_thr = 0.7
            min_bbox_side = 2

        class subsample_proposal:
            proposal_wo_gt = False
            image_roi = 512
            fg_fraction = 0.5
            fg_thr = 0.5
            bg_thr_hi = 0.5
            bg_thr_lo = 0.0

        class bbox_target:
            num_reg_class = 2
            class_agnostic = False
            weight = (1.0, 1.0, 1.0, 1.0)
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.1, 0.1, 0.2, 0.2)

    class BboxParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = 1 + 1
        image_roi = 512
        batch_image = General.batch_image

        class regress_target:
            class_agnostic = False
            mean = (0.0, 0.0, 0.0, 0.0)
            std = (0.1, 0.1, 0.2, 0.2)

    class RoiParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        out_size = 7
        stride = (4, 8, 16, 32)
        roi_canonical_scale = 224
        roi_canonical_level = 4

    class DatasetParam:
        if is_train:
            image_set = ("crowdhuman_train", )
        else:
            image_set = ("crowdhuman_val", )

    backbone = Backbone(BackboneParam)
    neck = Neck(NeckParam)
    rpn_head = RpnHead(RpnParam)
    roi_extractor = RoiExtractor(RoiParam)
    bbox_head = BboxHead(BboxParam)
    detector = Detector()
    if is_train:
        train_sym = detector.get_train_symbol(backbone, neck, rpn_head,
                                              roi_extractor, bbox_head)
        rpn_test_sym = None
        test_sym = None
    else:
        train_sym = None
        rpn_test_sym = detector.get_rpn_test_symbol(backbone, neck, rpn_head)
        test_sym = detector.get_test_symbol(backbone, neck, rpn_head,
                                            roi_extractor, bbox_head)

    class ModelParam:
        train_symbol = train_sym
        test_symbol = test_sym
        rpn_test_symbol = rpn_test_sym

        from_scratch = False
        random = True
        memonger = False
        memonger_until = "stage3_unit21_plus"

        class pretrain:
            prefix = "pretrain_model/resnet%s_v1b" % BackboneParam.depth
            epoch = 0
            fixed_param = [
                "conv0", "stage1", "bn_gamma", "bn_beta", "bn0", "bn1", "bn2",
                "bn3", "bn4"
            ]

        def process_weight(sym, arg, aux):
            for stride in RpnParam.anchor_generate.stride:
                add_anchor_to_arg(sym, arg, aux,
                                  RpnParam.anchor_generate.max_side, stride,
                                  RpnParam.anchor_generate.scale,
                                  RpnParam.anchor_generate.ratio)

    class OptimizeParam:
        class optimizer:
            type = "sgd"
            lr = 0.01 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
            momentum = 0.9
            wd = 0.0001
            clip_gradient = None

        class schedule:
            begin_epoch = 0
            end_epoch = 10
            lr_iter = [
                14960 * 16 //
                (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 17765 *
                16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)
            ]

        class warmup:
            type = "gradual"
            lr = 0.01 / 8 * len(
                KvstoreParam.gpus) * KvstoreParam.batch_image / 3.0
            iter = 500

    class TestParam:
        min_det_score = 0.05
        max_det_per_image = 300

        process_roidb = lambda x: x
        process_output = lambda x, y: x

        class model:
            prefix = "experiments/{}/checkpoint".format(General.name)
            epoch = OptimizeParam.schedule.end_epoch

        class nms:
            type = "nms"
            thr = 0.5

        class coco:
            annotation = "/mnt/truenas/scratch/czh/data/crowdhuman/annotations/annotation_val.json"

    # data processing
    class NormParam:
        mean = tuple(i * 255 for i in (0.485, 0.456, 0.406))  # RGB order
        std = tuple(i * 255 for i in (0.229, 0.224, 0.225))

    # data processing
    class ResizeParam:
        short = 800
        long = 1400

    class PadParam:
        short = 800
        long = 1400
        max_num_gt = 500

    class AnchorTarget2DParam:
        def __init__(self):
            self.generate = self._generate()

        class _generate:
            def __init__(self):
                self.stride = (4, 8, 16, 32, 64)
                self.short = (200, 100, 50, 25, 13)
                self.long = (350, 175, 88, 44, 22)

            scales = (8)
            aspects = RpnParam.anchor_generate.ratio

        class assign:
            allowed_border = 1000
            pos_thr = 0.7
            neg_thr = 0.3
            min_pos_thr = 0.0

        class sample:
            image_anchor = 256
            pos_fraction = 0.5

    class RenameParam:
        mapping = dict(image="data")


    from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
        ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
        RenameRecord, Norm2DImage

    from models.crowdhuman.input import PyramidAnchorTarget2D

    if is_train:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            Flip2DImageBbox(),
            Pad2DImageBbox(PadParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data"]
        label_name = ["gt_bbox", "im_info"]
        if not RpnParam.nnvm_rpn_target:
            transform.append(PyramidAnchorTarget2D(AnchorTarget2DParam()))
            label_name += ["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"]
    else:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "im_id", "rec_id"]
        label_name = []

    import core.detection_metric as metric

    rpn_acc_metric = metric.AccWithIgnore(
        "RpnAcc", ["rpn_cls_loss_output", "rpn_cls_label_blockgrad_output"],
        [])
    rpn_l1_metric = metric.L1(
        "RpnL1", ["rpn_reg_loss_output", "rpn_cls_label_blockgrad_output"], [])

    emd_metric = metric.ScalarLoss("emd", [
        'cls_reg_loss_output',
    ], [])

    metric_list = [rpn_acc_metric, rpn_l1_metric, emd_metric]

    return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \
           ModelParam, OptimizeParam, TestParam, \
           transform, data_name, label_name, metric_list
Beispiel #3
0
def get_config(is_train):
    class General:
        log_frequency = 10
        name = __name__.rsplit("/")[-1].rsplit(".")[-1]
        batch_image = 2 if is_train else 1
        fp16 = False

    class KvstoreParam:
        kvstore = "nccl"
        batch_image = General.batch_image
        gpus = [0, 1, 2, 3, 4, 5, 6, 7]
        fp16 = General.fp16

    class NormalizeParam:
        normalizer = normalizer_factory(type="fixbn")

    class BackboneParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer

    class NeckParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer

    class RpnParam:
        num_class = 1 + 80
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        batch_image = General.batch_image

        class anchor_generate:
            scale = (4 * 2**0, 4 * 2**(1.0 / 3.0), 4 * 2**(2.0 / 3.0))
            ratio = (0.5, 1.0, 2.0)
            stride = (8, 16, 32, 64, 128)
            max_side = 1440

        class anchor_assign:
            allowed_border = 9999
            bbox_thr = 0.6
            pre_anchor_top_n = 50

        class head:
            conv_channel = 256
            mean = (.0, .0, .0, .0)
            std = (0.1, 0.1, 0.2, 0.2)

        class proposal:
            pre_nms_top_n = 1000
            post_nms_top_n = None
            nms_thr = None
            min_bbox_side = None

        class subsample_proposal:
            proposal_wo_gt = None
            image_roi = None
            fg_fraction = None
            fg_thr = None
            bg_thr_hi = None
            bg_thr_lo = None

        class bbox_target:
            num_reg_class = None
            class_agnostic = None
            weight = None
            mean = None
            std = None

        class focal_loss:
            alpha = 0.5
            gamma = 2.0

    class BboxParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        num_class = None
        image_roi = None
        batch_image = None

        class regress_target:
            class_agnostic = None
            mean = None
            std = None

    class RoiParam:
        fp16 = General.fp16
        normalizer = NormalizeParam.normalizer
        out_size = None
        stride = None

    class DatasetParam:
        if is_train:
            image_set = ("coco_train2017", )
        else:
            image_set = ("coco_val2017", )

    backbone = Backbone(BackboneParam)
    neck = Neck(NeckParam)
    rpn_head = RpnHead(RpnParam)
    detector = Detector()
    if is_train:
        train_sym = detector.get_train_symbol(backbone, neck, rpn_head)
        test_sym = None
    else:
        train_sym = None
        test_sym = detector.get_test_symbol(backbone, neck, rpn_head)

    class ModelParam:
        train_symbol = train_sym
        test_symbol = test_sym

        from_scratch = False
        random = True
        memonger = False
        memonger_until = "stage3_unit21_plus"

        class pretrain:
            prefix = "pretrain_model/resnet-v1-101"
            epoch = 0
            fixed_param = ["conv0", "stage1", "gamma", "beta"]

        def process_weight(sym, arg, aux):
            for stride in RpnParam.anchor_generate.stride:
                add_anchor_to_arg(sym, arg, aux,
                                  RpnParam.anchor_generate.max_side, stride,
                                  RpnParam.anchor_generate.scale,
                                  RpnParam.anchor_generate.ratio)

    class OptimizeParam:
        class optimizer:
            type = "sgd"
            lr = 0.005 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image
            momentum = 0.9
            wd = 0.0001
            clip_gradient = 35

        class schedule:
            begin_epoch = 0
            end_epoch = 6
            lr_iter = [
                60000 * 16 //
                (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 80000 *
                16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)
            ]

        class warmup:
            type = "gradual"
            lr = 0.005 / 8 * len(
                KvstoreParam.gpus) * KvstoreParam.batch_image / 3
            iter = 1000

    class TestParam:
        min_det_score = 0.05  # filter appended boxes
        max_det_per_image = 100

        def process_roidb(x):
            return x  # noqa: E704

        def process_output(x, y):
            return x  # noqa: E704

        class model:
            prefix = "experiments/{}/checkpoint".format(General.name)
            epoch = OptimizeParam.schedule.end_epoch

        class nms:
            type = "nms"
            thr = 0.5

        class coco:
            annotation = "data/coco/annotations/instances_minival2014.json"

    # data processing
    class NormParam:
        mean = (122.7717, 115.9465, 102.9801)  # RGB order
        std = (1.0, 1.0, 1.0)

    class ResizeParam:
        short = 800
        long = 1333

    class PadParam:
        short = 800
        long = 1333
        max_num_gt = 100

    class RenameParam:
        mapping = dict(image="data")

    from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \
        ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \
        RenameRecord
    from models.retinanet.input import Norm2DImage

    if is_train:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            Flip2DImageBbox(),
            Pad2DImageBbox(PadParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data"]
        label_name = ["gt_bbox", "im_info"]
    else:
        transform = [
            ReadRoiRecord(None),
            Norm2DImage(NormParam),
            Resize2DImageBbox(ResizeParam),
            ConvertImageFromHwcToChw(),
            RenameRecord(RenameParam.mapping)
        ]
        data_name = ["data", "im_info", "im_id", "rec_id"]
        label_name = []

    import core.detection_metric as metric
    pos_loss = metric.ScalarLoss("PosLoss", ["positive_loss_output"], [])
    neg_loss = metric.ScalarLoss("NegLoss", ["negative_loss_output"], [])
    metric_list = [pos_loss, neg_loss]

    return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \
        ModelParam, OptimizeParam, TestParam, \
        transform, data_name, label_name, metric_list