class sentiment:
    host = "localhost"
    port = 8086
    user = None
    password = None
    dbname = "mydb2"

    db = DBHandler(host, port, user, password, dbname)

    dl = DataLoader()

    def get_sentiment(self, ticker, company, startDate):

        db = self.db
        dl = self.dl

        startTime = datetime.datetime.strptime(startDate, "%Y-%m-%d")
        currentTime = datetime.datetime.today().strftime("%Y-%m-%d")
        currentTime = datetime.datetime.strptime(currentTime, "%Y-%m-%d")

        days = currentTime - startTime
        days = days.days

        output = db.QueryDataFromTable("select * from " + ticker +
                                       " where time > now() - " + str(days) +
                                       "d")

        df = dl.db_to_df(output)

        for i in range(len(df)):
            time = df.iloc[[i]].index[0]
            if time < datetime.datetime(2006, 6, 30):
                avg_polarity = 0.0
                avg_subjectivity = 0.0
                time = str(time)
                time = time.replace(" 00:00:00", "")
            else:
                time = str(time)
                time = time.replace(" 00:00:00", "")

                time2 = datetime.datetime.strptime(time, "%Y-%m-%d")
                next_day = str(time2 + datetime.timedelta(days=1))
                next_day = next_day.replace(" 00:00:00", "")

                tweetCriteria = (got.manager.TweetCriteria().setQuerySearch(
                    company).setSince(time).setUntil(next_day).setMaxTweets(0))

                tweets = got.manager.TweetManager.getTweets(tweetCriteria)

                if len(tweets) == 0:
                    avg_polarity = 0.0
                    avg_subjectivity = 0.0

                else:
                    data = dict()
                    j = 0

                    for tweet in tweets:
                        if "http" not in tweet.text:
                            analysis = TextBlob(tweet.text)
                            data[j] = {
                                "polarity": analysis.sentiment.polarity,
                                "subjectivity":
                                analysis.sentiment.subjectivity,
                            }
                            j += 1

                    polarity_total = 0
                    subjectivity_total = 0
                    invalid_data_counter = 0

                    for index in data:
                        if (data[index]["polarity"] == 0
                                or data[index]["subjectivity"] == 0):
                            invalid_data_counter += 1

                        if invalid_data_counter == len(data):
                            avg_polarity = 0.0
                            avg_subjectivity = 0.0
                        else:
                            polarity_total = polarity_total + data[index][
                                "polarity"]
                            subjectivity_total = (subjectivity_total +
                                                  data[index]["subjectivity"])

                    if len(data) - invalid_data_counter == 0:
                        avg_polarity = 0.0
                        avg_subjectivity = 0.0
                    else:
                        avg_polarity = polarity_total / (len(data) -
                                                         invalid_data_counter)
                        avg_subjectivity = subjectivity_total / (
                            len(data) - invalid_data_counter)

            output = db.GetRowFromTable(ticker, time)

            close = float(output[0][1])

            predict = float(output[0][2])

            data = [[time, close, predict, avg_polarity, avg_subjectivity]]
            df2 = pd.DataFrame(
                data,
                columns=[
                    "Date", "Close", "Prediction", "Polarity", "Subjectivity"
                ],
            )

            df2["Date"] = pd.to_datetime(df2.Date, format="%Y-%m-%d")
            df2.index = df2["Date"]
            df2.drop(["Date"], inplace=True, axis=1)
            print(df2)

            db.DataFrameToDB(df2, ticker)
from alpha_vantage.timeseries import TimeSeries
from dbhelper.db_handler import DBHandler
from time import mktime
import GetOldTweets3 as got
from textblob import TextBlob
from pandas.io.json import json_normalize

host = "localhost"
port = 8086
user = None
password = None
dbname = "mydb"

db = DBHandler(host, port, user, password, dbname)

dl = DataLoader()

status = False

i = 1

ticker = "JPM"

output = db.QueryDataFromTable("select * from " + ticker)

df = dl.db_to_df(output)

print(df)

# time = df.tail(1).index[0]
#!/usr/bin/env python3

from core.get_data import DataLoader
import pandas as pd
import json
import datetime
from alpha_vantage.timeseries import TimeSeries
from dbhelper.db_handler import DBHandler
from time import mktime
import GetOldTweets3 as got
from textblob import TextBlob


dl = DataLoader()

company = "American Airlines"
time = "2012-09-06"
next_day = "2012-09-07"


tweetCriteria = (
    got.manager.TweetCriteria()
    .setQuerySearch(company)
    .setSince(time)
    .setUntil(next_day)
    .setMaxTweets(1)
)

tweets = got.manager.TweetManager.getTweets(tweetCriteria)
print(tweets)
# data = dict()
#!/usr/bin/env python3

from core.get_data import DataLoader
from core.data_processing import DataProcessing
from alpha_vantage.timeseries import TimeSeries
from core.model import Model
from dbhelper.db_handler import DBHandler
import pandas as pd
import json

dl = DataLoader()
dp = DataProcessing()

host = "localhost"
port = 8086
user = None
password = None
dbname = "mydb2"

db = DBHandler(host, port, user, password, dbname)

company = "AAL"

df = dl.csv_to_df(company + ".csv")

print(df)

db.DataFrameToDB(df, "testing")
#!/usr/bin/env python3

from core.get_data import DataLoader
from core.model import Model
import pandas as pd
import json
import datetime
from alpha_vantage.timeseries import TimeSeries
from dbhelper.db_handler import DBHandler
from keras import backend as keras
from time import mktime
import GetOldTweets3 as got
from textblob import TextBlob

dl = DataLoader()
md = Model(dl.scaler)

host = "localhost"
port = 8086
user = None
password = None
dbname = "mydb"

db = DBHandler(host, port, user, password, dbname)

df = dl.get_historical_data("AAL")

x_train, y_train = dl.get_train_data(df)

model = md.create_model(x_train, y_train)
Beispiel #6
0
#!/usr/bin/env python3

from core.get_data import DataLoader
from core.data_processing import DataProcessing
from alpha_vantage.timeseries import TimeSeries
from core.model import Model
from dbhelper.db_handler import DBHandler
import pandas as pd
import json

dl = DataLoader()
dp = DataProcessing()

host = "localhost"
port = 8086
user = None
password = None
dbname = "mydb2"

db = DBHandler(host, port, user, password, dbname)

output = db.QueryDataFromTable("select * from AAL")

new_output = dl.db_to_df(output)

print(new_output)

dl.df_to_csv(new_output, "AAL.csv")