Beispiel #1
0
def main(model_class_name=None,
         saved_models_path=None,
         training_data_src_path=None,
         force_model_name=None,
         input_path=None,
         output_path=None,
         output_mask_path=None,
         aligned_path=None,
         force_gpu_idxs=None,
         cpu_only=None):
    io.log_info("Running merger.\r\n")

    try:
        if not input_path.exists():
            io.log_err('Input directory not found. Please ensure it exists.')
            return

        if not output_path.exists():
            output_path.mkdir(parents=True, exist_ok=True)

        if not output_mask_path.exists():
            output_mask_path.mkdir(parents=True, exist_ok=True)

        if not saved_models_path.exists():
            io.log_err('Model directory not found. Please ensure it exists.')
            return

        # Initialize model
        import models
        model = models.import_model(model_class_name)(
            is_training=False,
            saved_models_path=saved_models_path,
            force_gpu_idxs=force_gpu_idxs,
            cpu_only=cpu_only)

        predictor_func, predictor_input_shape, cfg = model.get_MergerConfig()

        # Preparing MP functions
        predictor_func = MPFunc(predictor_func)

        run_on_cpu = len(nn.getCurrentDeviceConfig().devices) == 0
        xseg_256_extract_func = MPClassFuncOnDemand(
            XSegNet,
            'extract',
            name='XSeg',
            resolution=256,
            weights_file_root=saved_models_path,
            place_model_on_cpu=True,
            run_on_cpu=run_on_cpu)

        face_enhancer_func = MPClassFuncOnDemand(FaceEnhancer,
                                                 'enhance',
                                                 place_model_on_cpu=True,
                                                 run_on_cpu=run_on_cpu)

        is_interactive = io.input_bool("Use interactive merger?",
                                       True) if not io.is_colab() else False

        #         if not is_interactive:
        #             cfg.ask_settings()

        subprocess_count = multiprocessing.cpu_count()
        #         subprocess_count = io.input_int("Number of workers?", max(8, multiprocessing.cpu_count()),
        #                                         valid_range=[1, multiprocessing.cpu_count()], help_message="Specify the number of threads to process. A low value may affect performance. A high value may result in memory error. The value may not be greater than CPU cores." )

        input_path_image_paths = pathex.get_image_paths(input_path)

        if cfg.type == MergerConfig.TYPE_MASKED:
            if not aligned_path.exists():
                io.log_err(
                    'Aligned directory not found. Please ensure it exists.')
                return

            packed_samples = None
            try:
                packed_samples = samplelib.PackedFaceset.load(aligned_path)
            except:
                io.log_err(
                    f"Error occured while loading samplelib.PackedFaceset.load {str(aligned_path)}, {traceback.format_exc()}"
                )

            if packed_samples is not None:
                io.log_info("Using packed faceset.")

                def generator():
                    for sample in io.progress_bar_generator(
                            packed_samples, "Collecting alignments"):
                        filepath = Path(sample.filename)
                        yield filepath, DFLIMG.load(
                            filepath,
                            loader_func=lambda x: sample.read_raw_file())
            else:

                def generator():
                    for filepath in io.progress_bar_generator(
                            pathex.get_image_paths(aligned_path),
                            "Collecting alignments"):
                        filepath = Path(filepath)
                        yield filepath, DFLIMG.load(filepath)

            alignments = {}
            multiple_faces_detected = False

            for filepath, dflimg in generator():
                if dflimg is None or not dflimg.has_data():
                    io.log_err(f"{filepath.name} is not a dfl image file")
                    continue

                source_filename = dflimg.get_source_filename()
                if source_filename is None:
                    continue

                source_filepath = Path(source_filename)
                source_filename_stem = source_filepath.stem

                if source_filename_stem not in alignments.keys():
                    alignments[source_filename_stem] = []

                alignments_ar = alignments[source_filename_stem]
                alignments_ar.append(
                    (dflimg.get_source_landmarks(), filepath, source_filepath))

                if len(alignments_ar) > 1:
                    multiple_faces_detected = True

            if multiple_faces_detected:
                io.log_info("")
                io.log_info(
                    "Warning: multiple faces detected. Only one alignment file should refer one source file."
                )
                io.log_info("")

            for a_key in list(alignments.keys()):
                a_ar = alignments[a_key]
                if len(a_ar) > 1:
                    for _, filepath, source_filepath in a_ar:
                        io.log_info(
                            f"alignment {filepath.name} refers to {source_filepath.name} "
                        )
                    io.log_info("")

                alignments[a_key] = [a[0] for a in a_ar]

            if multiple_faces_detected:
                io.log_info(
                    "It is strongly recommended to process the faces separatelly."
                )
                io.log_info(
                    "Use 'recover original filename' to determine the exact duplicates."
                )
                io.log_info("")

            frames = [
                InteractiveMergerSubprocessor.Frame(frame_info=FrameInfo(
                    filepath=Path(p),
                    landmarks_list=alignments.get(Path(p).stem, None)))
                for p in input_path_image_paths
            ]

            if multiple_faces_detected:
                io.log_info(
                    "Warning: multiple faces detected. Motion blur will not be used."
                )
                io.log_info("")
            else:
                s = 256
                local_pts = [(s // 2 - 1, s // 2 - 1),
                             (s // 2 - 1, 0)]  #center+up
                frames_len = len(frames)
                for i in io.progress_bar_generator(range(len(frames)),
                                                   "Computing motion vectors"):
                    fi_prev = frames[max(0, i - 1)].frame_info
                    fi = frames[i].frame_info
                    fi_next = frames[min(i + 1, frames_len - 1)].frame_info
                    if len(fi_prev.landmarks_list) == 0 or \
                       len(fi.landmarks_list) == 0 or \
                       len(fi_next.landmarks_list) == 0:
                        continue

                    mat_prev = LandmarksProcessor.get_transform_mat(
                        fi_prev.landmarks_list[0], s, face_type=FaceType.FULL)
                    mat = LandmarksProcessor.get_transform_mat(
                        fi.landmarks_list[0], s, face_type=FaceType.FULL)
                    mat_next = LandmarksProcessor.get_transform_mat(
                        fi_next.landmarks_list[0], s, face_type=FaceType.FULL)

                    pts_prev = LandmarksProcessor.transform_points(
                        local_pts, mat_prev, True)
                    pts = LandmarksProcessor.transform_points(
                        local_pts, mat, True)
                    pts_next = LandmarksProcessor.transform_points(
                        local_pts, mat_next, True)

                    prev_vector = pts[0] - pts_prev[0]
                    next_vector = pts_next[0] - pts[0]

                    motion_vector = pts_next[0] - pts_prev[0]
                    fi.motion_power = npla.norm(motion_vector)

                    motion_vector = motion_vector / fi.motion_power if fi.motion_power != 0 else np.array(
                        [0, 0], dtype=np.float32)

                    fi.motion_deg = -math.atan2(
                        motion_vector[1], motion_vector[0]) * 180 / math.pi

        if len(frames) == 0:
            io.log_info("No frames to merge in input_dir.")
        else:
            if False:
                pass
            else:
                InteractiveMergerSubprocessor(
                    is_interactive=is_interactive,
                    merger_session_filepath=model.get_strpath_storage_for_file(
                        'merger_session.dat'),
                    predictor_func=predictor_func,
                    predictor_input_shape=predictor_input_shape,
                    face_enhancer_func=face_enhancer_func,
                    xseg_256_extract_func=xseg_256_extract_func,
                    merger_config=cfg,
                    frames=frames,
                    frames_root_path=input_path,
                    output_path=output_path,
                    output_mask_path=output_mask_path,
                    model_iter=model.get_iter(),
                    subprocess_count=subprocess_count,
                ).run()

        model.finalize()

    except Exception as e:
        print(traceback.format_exc())