def __init__(self, in_channels, channels, kernel_size, stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, radix=2, reduction_factor=4, rectify=False, rectify_avg=False, norm_layer=None, num_splits=1, dropblock_prob=0.0, **kwargs): super(SplAtConv2d, self).__init__() padding = _pair(padding) self.rectify = rectify and (padding[0] > 0 or padding[1] > 0) self.rectify_avg = rectify_avg inter_channels = max(in_channels * radix // reduction_factor, 32) self.radix = radix self.cardinality = groups self.channels = channels self.dropblock_prob = dropblock_prob if self.rectify: from rfconv import RFConv2d self.conv = RFConv2d(in_channels, channels * radix, kernel_size, stride, padding, dilation, groups=groups * radix, bias=bias, average_mode=rectify_avg, **kwargs) else: self.conv = Conv2d(in_channels, channels * radix, kernel_size, stride, padding, dilation, groups=groups * radix, bias=bias, **kwargs) self.use_bn = norm_layer is not None if self.use_bn: self.bn0 = get_norm(norm_layer, channels * radix, num_splits) self.relu = ReLU(inplace=True) self.fc1 = Conv2d(channels, inter_channels, 1, groups=self.cardinality) if self.use_bn: self.bn1 = get_norm(norm_layer, inter_channels, num_splits) self.fc2 = Conv2d(inter_channels, channels * radix, 1, groups=self.cardinality) self.rsoftmax = rSoftMax(radix, groups)
def __init__(self, inplanes, planes, bn_norm, num_splits, with_ibn=False, with_se=False, stride=1, downsample=None, reduction=16): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) if with_ibn: self.bn1 = IBN(planes, bn_norm, num_splits) else: self.bn1 = get_norm(bn_norm, planes, num_splits) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = get_norm(bn_norm, planes, num_splits) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = get_norm(bn_norm, planes * self.expansion, num_splits) self.relu = nn.ReLU(inplace=True) if with_se: self.se = SELayer(planes * self.expansion, reduction) else: self.se = nn.Identity() self.downsample = downsample self.stride = stride
def _make_layer(self, block, planes, blocks, stride=1, bn_norm="BN", num_splits=1, with_ibn=False, with_se=False): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), get_norm(bn_norm, planes * block.expansion, num_splits), ) layers = [] if planes == 512: with_ibn = False layers.append( block(self.inplanes, planes, bn_norm, num_splits, with_ibn, with_se, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(self.inplanes, planes, bn_norm, num_splits, with_ibn, with_se)) return nn.Sequential(*layers)
def __init__(self, last_stride, bn_norm, num_splits, with_ibn, with_se, with_nl, block, layers, non_layers): self.inplanes = 64 super().__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = get_norm(bn_norm, 64, num_splits) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], 1, bn_norm, num_splits, with_ibn, with_se) self.layer2 = self._make_layer(block, 128, layers[1], 2, bn_norm, num_splits, with_ibn, with_se) self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, num_splits, with_ibn, with_se) self.layer4 = self._make_layer(block, 512, layers[3], last_stride, bn_norm, num_splits, with_se=with_se) self.random_init() if with_nl: self._build_nonlocal(layers, non_layers, bn_norm, num_splits) else: self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = []
def _build_pool_reduce(pool_layer, bn_norm, num_splits, input_dim=2048, reduce_dim=256): pool_reduce = nn.Sequential( pool_layer, nn.Conv2d(input_dim, reduce_dim, 1, bias=False), get_norm(bn_norm, reduce_dim, num_splits), nn.ReLU(True), ) pool_reduce.apply(weights_init_kaiming) return pool_reduce
def __init__(self, inplanes, planes, bn_norm, num_splits, with_ibn=False, stride=1, downsample=None, radix=1, cardinality=1, bottleneck_width=64, avd=False, avd_first=False, dilation=1, is_first=False, rectified_conv=False, rectify_avg=False, dropblock_prob=0.0, last_gamma=False): super(Bottleneck, self).__init__() group_width = int(planes * (bottleneck_width / 64.)) * cardinality self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False) if with_ibn: self.bn1 = IBN(group_width, bn_norm, num_splits) else: self.bn1 = get_norm(bn_norm, group_width, num_splits) self.dropblock_prob = dropblock_prob self.radix = radix self.avd = avd and (stride > 1 or is_first) self.avd_first = avd_first if self.avd: self.avd_layer = nn.AvgPool2d(3, stride, padding=1) stride = 1 if radix > 1: self.conv2 = SplAtConv2d(group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False, radix=radix, rectify=rectified_conv, rectify_avg=rectify_avg, norm_layer=bn_norm, num_splits=num_splits, dropblock_prob=dropblock_prob) elif rectified_conv: from rfconv import RFConv2d self.conv2 = RFConv2d(group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False, average_mode=rectify_avg) self.bn2 = get_norm(bn_norm, group_width, num_splits) else: self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False) self.bn2 = get_norm(bn_norm, group_width, num_splits) self.conv3 = nn.Conv2d(group_width, planes * 4, kernel_size=1, bias=False) self.bn3 = get_norm(bn_norm, planes * 4, num_splits) if last_gamma: from torch.nn.init import zeros_ zeros_(self.bn3.weight) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.dilation = dilation self.stride = stride
def _make_layer(self, block, planes, blocks, stride=1, bn_norm="BN", num_splits=1, with_ibn=False, dilation=1, dropblock_prob=0.0, is_first=True): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append( nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)) else: down_layers.append( nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False)) down_layers.append( get_norm(bn_norm, planes * block.expansion, num_splits)) downsample = nn.Sequential(*down_layers) layers = [] if planes == 512: with_ibn = False if dilation == 1 or dilation == 2: layers.append( block(self.inplanes, planes, bn_norm, num_splits, with_ibn, stride, downsample=downsample, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=1, is_first=is_first, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma)) elif dilation == 4: layers.append( block(self.inplanes, planes, bn_norm, num_splits, with_ibn, stride, downsample=downsample, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=2, is_first=is_first, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma)) else: raise RuntimeError("=> unknown dilation size: {}".format(dilation)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(self.inplanes, planes, bn_norm, num_splits, with_ibn, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=dilation, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma)) return nn.Sequential(*layers)
def __init__(self, last_stride, bn_norm, num_splits, with_ibn, with_nl, block, layers, non_layers, radix=1, groups=1, bottleneck_width=64, dilated=False, dilation=1, deep_stem=False, stem_width=64, avg_down=False, rectified_conv=False, rectify_avg=False, avd=False, avd_first=False, final_drop=0.0, dropblock_prob=0, last_gamma=False): self.cardinality = groups self.bottleneck_width = bottleneck_width # ResNet-D params self.inplanes = stem_width * 2 if deep_stem else 64 self.avg_down = avg_down self.last_gamma = last_gamma # ResNeSt params self.radix = radix self.avd = avd self.avd_first = avd_first super().__init__() self.rectified_conv = rectified_conv self.rectify_avg = rectify_avg if rectified_conv: from rfconv import RFConv2d conv_layer = RFConv2d else: conv_layer = nn.Conv2d conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {} if deep_stem: self.conv1 = nn.Sequential( conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False, **conv_kwargs), get_norm(bn_norm, stem_width, num_splits), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), get_norm(bn_norm, stem_width, num_splits), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width * 2, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), ) else: self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3, bias=False, **conv_kwargs) self.bn1 = get_norm(bn_norm, self.inplanes, num_splits) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], 1, bn_norm, num_splits, with_ibn=with_ibn, is_first=False) self.layer2 = self._make_layer(block, 128, layers[1], 2, bn_norm, num_splits, with_ibn=with_ibn) if dilated or dilation == 4: self.layer3 = self._make_layer(block, 256, layers[2], 1, bn_norm, num_splits, with_ibn=with_ibn, dilation=2, dropblock_prob=dropblock_prob) self.layer4 = self._make_layer(block, 512, layers[3], 1, bn_norm, num_splits, with_ibn=with_ibn, dilation=4, dropblock_prob=dropblock_prob) elif dilation == 2: self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, num_splits, with_ibn=with_ibn, dilation=1, dropblock_prob=dropblock_prob) self.layer4 = self._make_layer(block, 512, layers[3], 1, bn_norm, num_splits, with_ibn=with_ibn, dilation=2, dropblock_prob=dropblock_prob) else: self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, num_splits, with_ibn=with_ibn, dropblock_prob=dropblock_prob) self.layer4 = self._make_layer(block, 512, layers[3], last_stride, bn_norm, num_splits, with_ibn=with_ibn, dropblock_prob=dropblock_prob) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() if with_nl: self._build_nonlocal(layers, non_layers, bn_norm, num_splits) else: self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = []
def __init__(self, cfg): super().__init__() self._cfg = cfg assert len(cfg.MODEL.PIXEL_MEAN) == len(cfg.MODEL.PIXEL_STD) self.register_buffer("pixel_mean", torch.Tensor(cfg.MODEL.PIXEL_MEAN).view(1, -1, 1, 1)) self.register_buffer("pixel_std", torch.Tensor(cfg.MODEL.PIXEL_STD).view(1, -1, 1, 1)) # backbone bn_norm = cfg.MODEL.BACKBONE.NORM num_splits = cfg.MODEL.BACKBONE.NORM_SPLIT with_se = cfg.MODEL.BACKBONE.WITH_SE backbone = build_backbone(cfg) self.backbone = nn.Sequential( backbone.conv1, backbone.bn1, backbone.relu, backbone.maxpool, backbone.layer1, backbone.layer2, backbone.layer3[0] ) res_conv4 = nn.Sequential(*backbone.layer3[1:]) res_g_conv5 = backbone.layer4 res_p_conv5 = nn.Sequential( Bottleneck(1024, 512, bn_norm, num_splits, False, with_se, downsample=nn.Sequential( nn.Conv2d(1024, 2048, 1, bias=False), get_norm(bn_norm, 2048, num_splits))), Bottleneck(2048, 512, bn_norm, num_splits, False, with_se), Bottleneck(2048, 512, bn_norm, num_splits, False, with_se)) res_p_conv5.load_state_dict(backbone.layer4.state_dict()) pool_type = cfg.MODEL.HEADS.POOL_LAYER if pool_type == 'avgpool': pool_layer = FastGlobalAvgPool2d() elif pool_type == 'maxpool': pool_layer = nn.AdaptiveMaxPool2d(1) elif pool_type == 'gempool': pool_layer = GeneralizedMeanPoolingP() elif pool_type == "avgmaxpool": pool_layer = AdaptiveAvgMaxPool2d() elif pool_type == "identity": pool_layer = nn.Identity() else: raise KeyError(f"{pool_type} is invalid, please choose from " f"'avgpool', 'maxpool', 'gempool', 'avgmaxpool' and 'identity'.") # head in_feat = cfg.MODEL.HEADS.IN_FEAT num_classes = cfg.MODEL.HEADS.NUM_CLASSES # branch1 self.b1 = nn.Sequential( copy.deepcopy(res_conv4), copy.deepcopy(res_g_conv5) ) self.b1_pool = self._build_pool_reduce(pool_layer, bn_norm, num_splits, reduce_dim=in_feat) self.b1_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) # branch2 self.b2 = nn.Sequential( copy.deepcopy(res_conv4), copy.deepcopy(res_p_conv5) ) self.b2_pool = self._build_pool_reduce(pool_layer, bn_norm, num_splits, reduce_dim=in_feat) self.b2_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) self.b21_pool = self._build_pool_reduce(pool_layer, bn_norm, num_splits, reduce_dim=in_feat) self.b21_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) self.b22_pool = self._build_pool_reduce(pool_layer, bn_norm, num_splits, reduce_dim=in_feat) self.b22_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) # branch3 self.b3 = nn.Sequential( copy.deepcopy(res_conv4), copy.deepcopy(res_p_conv5) ) self.b3_pool = self._build_pool_reduce(pool_layer, bn_norm, num_splits, reduce_dim=in_feat) self.b3_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) self.b31_pool = self._build_pool_reduce(pool_layer, bn_norm, num_splits, reduce_dim=in_feat) self.b31_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) self.b32_pool = self._build_pool_reduce(pool_layer, bn_norm, num_splits, reduce_dim=in_feat) self.b32_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity()) self.b33_pool = self._build_pool_reduce(pool_layer, bn_norm, num_splits, reduce_dim=in_feat) self.b33_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity())