Beispiel #1
0
    def init_modules(self):
        """
        some modules
        """

        self.feature_extractor = OFTNetFeatureExtractor(
            self.feature_extractor_config)

        feats_reduce_1 = nn.Conv2d(128, self.feat_size, 1, 1, 0)
        feats_reduce_2 = nn.Conv2d(256, self.feat_size, 1, 1, 0)
        feats_reduce_3 = nn.Conv2d(512, self.feat_size, 1, 1, 0)
        self.feats_reduces = nn.ModuleList(
            [feats_reduce_1, feats_reduce_2, feats_reduce_3])

        self.feat_collapse = nn.Conv2d(8, 1, 1, 1, 0)

        self.output_head = nn.Conv2d(256 * 4, self.output_channels, 1, 1, 0)

        # loss
        self.reg_loss = nn.L1Loss(reduce=False)
        # self.reg_loss = nn.SmoothL1Loss(reduce=False)
        # if self.use_focal_loss:
        # self.conf_loss = FocalLoss(
        # self.n_classes, alpha=0.2, gamma=2, auto_alpha=False)
        # else:
        # self.conf_loss = nn.CrossEntropyLoss(reduce=False)
        self.conf_loss = nn.L1Loss(reduce=False)

        self.angle_loss = MultiBinLoss(num_bins=self.num_bins)
Beispiel #2
0
    def init_modules(self):
        self.det_model = PRNet(ModelCFG)

        # dims loss
        self.dims_loss = nn.SmoothL1Loss(reduce=False)

        # multibin loss
        self.multibin_loss = MultiBinLoss(self.num_bins)
Beispiel #3
0
    def init_modules(self):
        self.feature_extractor = ResNetFeatureExtractor(
            self.feature_extractor_config)
        self.rpn_model = RPNModel(self.rpn_config)
        if self.pooling_mode == 'align':
            self.rcnn_pooling = RoIAlignAvg(self.pooling_size,
                                            self.pooling_size, 1.0 / 16.0)
        elif self.pooling_mode == 'ps':
            self.rcnn_pooling = PSRoIPool(7, 7, 1.0 / 16, 7, self.n_classes)
        elif self.pooling_mode == 'psalign':
            raise NotImplementedError('have not implemented yet!')
        elif self.pooling_mode == 'deformable_psalign':
            raise NotImplementedError('have not implemented yet!')
        #  self.rcnn_cls_pred = nn.Linear(2048, self.n_classes)
        self.rcnn_cls_pred = nn.Conv2d(2048, self.n_classes, 3, 1, 1)
        if self.reduce:
            in_channels = 2048
        else:
            in_channels = 2048 * 4 * 4
        if self.class_agnostic:
            self.rcnn_bbox_pred = nn.Linear(in_channels, 4)
        else:
            self.rcnn_bbox_pred = nn.Linear(in_channels, 4 * self.n_classes)

        # loss module
        if self.use_focal_loss:
            self.rcnn_cls_loss = FocalLoss(2)
        else:
            self.rcnn_cls_loss = functools.partial(F.cross_entropy,
                                                   reduce=False)

        self.rcnn_bbox_loss = nn.modules.SmoothL1Loss(reduce=False)

        # some 3d statistic
        # some 2d points projected from 3d
        # self.rcnn_3d_preds_new = nn.Linear(in_channels, 3 + 4 * self.num_bins)

        self.rcnn_3d_loss = MultiBinLoss(num_bins=self.num_bins)

        # dims
        self.rcnn_dims_pred = nn.Sequential(
            *[nn.Linear(in_channels, 256),
              nn.ReLU(),
              nn.Linear(256, 3)])

        # angle
        self.rcnn_angle_pred = nn.Sequential(*[
            nn.Linear(in_channels, 256),
            nn.ReLU(),
            nn.Linear(256, self.num_bins * 2)
        ])

        # angle conf
        self.rcnn_angle_conf_pred = nn.Sequential(*[
            nn.Linear(in_channels, 256),
            nn.ReLU(),
            nn.Linear(256, self.num_bins * 2)
        ])
Beispiel #4
0
    def init_modules(self):
        """
        some modules
        """

        self.feature_extractor = OFTNetFeatureExtractor(
            self.feature_extractor_config)

        feats_reduce_1 = nn.Conv2d(128, self.feat_size, 1, 1, 0)
        feats_reduce_2 = nn.Conv2d(256, self.feat_size, 1, 1, 0)
        feats_reduce_3 = nn.Conv2d(512, self.feat_size, 1, 1, 0)
        self.feats_reduces = nn.ModuleList(
            [feats_reduce_1, feats_reduce_2, feats_reduce_3])

        self.feat_collapse = nn.Conv2d(8, 1, 1, 1, 0)

        self.rcnn_output_head = nn.Conv2d(1152, self.rcnn_output_channels, 1,
                                          1, 0)

        self.rpn_output_head = nn.Conv2d(256 * 4, self.rpn_output_channels, 1,
                                         1, 0)

        # loss
        self.reg_loss = nn.L1Loss(reduce=False)
        # self.reg_loss = nn.SmoothL1Loss(reduce=False)
        # if self.use_focal_loss:
        # self.conf_loss = FocalLoss(
        # self.n_classes, alpha=0.2, gamma=2, auto_alpha=False)
        # else:
        # self.conf_loss = nn.CrossEntropyLoss(reduce=False)
        self.conf_loss = nn.L1Loss(reduce=False)

        self.angle_loss = MultiBinLoss(num_bins=self.num_bins)

        # fusion layer
        # self.upconv1 = nn.ConvTranspose2d(self.feat_size, self.feat_size, 2, 2,
        # 0)
        self.fusion1 = nn.Conv2d(2 * self.feat_size, self.feat_size, 3, 1, 1)
        self.fusion1_bn = nn.BatchNorm2d(self.feat_size)
        self.relu1 = nn.ReLU()
        self.upconv2 = nn.ConvTranspose2d(self.feat_size, self.feat_size, 2, 2,
                                          0)
        self.upconv2_bn = nn.BatchNorm2d(self.feat_size)
        self.upconv2_relu = nn.ReLU()

        self.relu2 = nn.ReLU()
        self.fusion2 = nn.Conv2d(2 * self.feat_size, self.feat_size, 3, 1, 1)
        self.fusion2_bn = nn.BatchNorm2d(self.feat_size)

        self.upconv3 = nn.ConvTranspose2d(self.feat_size, self.feat_size, 2, 2,
                                          0)
        self.upconv3_bn = nn.BatchNorm2d(self.feat_size)
        self.upconv3_relu = nn.ReLU()
        # self.fusion3 = nn.Conv2d(self.feat_size, self.feat_size, 3, 1, 1)
        # self.relu3 = nn.ReLU()

        self.rcnn_pooling = RoIAlignAvg(self.pooling_size, self.pooling_size,
                                        1.0 / 8.0)
Beispiel #5
0
    def init_modules(self):
        self.feature_extractor = ResNetFeatureExtractor(
            self.feature_extractor_config)
        self.rpn_model = RPNModel(self.rpn_config)
        if self.pooling_mode == 'align':
            self.rcnn_pooling = ROIAlign((self.pooling_size,
                                          self.pooling_size), 1.0 / 16.0, 2)
        elif self.pooling_mode == 'ps':
            self.rcnn_pooling = PSRoIPool(7, 7, 1.0 / 16, 7, self.n_classes)
        elif self.pooling_mode == 'psalign':
            raise NotImplementedError('have not implemented yet!')
        elif self.pooling_mode == 'deformable_psalign':
            raise NotImplementedError('have not implemented yet!')
        # self.rcnn_cls_pred = nn.Conv2d(2048, self.n_classes, 3, 1, 1)
        self.rcnn_cls_preds = nn.Linear(2048, self.n_classes)
        if self.reduce:
            in_channels = 2048
        else:
            in_channels = 2048 * 4 * 4
        if self.class_agnostic:
            self.rcnn_bbox_preds = nn.Linear(in_channels, 4)
        else:
            self.rcnn_bbox_preds = nn.Linear(in_channels, 4 * self.n_classes)

        # loss module
        if self.use_focal_loss:
            self.rcnn_cls_loss = FocalLoss(self.n_classes)
        else:
            self.rcnn_cls_loss = functools.partial(
                F.cross_entropy, reduce=False)

        self.rcnn_bbox_loss = nn.modules.SmoothL1Loss(reduce=False)

        # self.rcnn_3d_pred = nn.Linear(c, 3 + 4 + 11 + 2 + 1)
        if self.class_agnostic_3d:
            self.rcnn_3d_pred = nn.Linear(in_channels, 3 + 4 * self.num_bins)
        else:
            self.rcnn_3d_pred = nn.Linear(
                in_channels, 3 * self.n_classes + 4 * self.num_bins)

        #  self.rcnn_3d_loss = OrientationLoss(split_loss=True)
        self.rcnn_3d_loss = MultiBinLoss(num_bins=self.num_bins)