Beispiel #1
0
 def _quantile(self, valeur):
     classe = self._classe_du_quantile(valeur)
     a = classe.start
     b = self.interval
     c = _r(classe.getNext().getNext().frequence_cum -
            classe.getNext().frequence_cum)
     d = _r(classe.frequence_cum - classe.getPrev().frequence_cum)
     print(f"{a} + {b} * ({c} / {d})\t\t{valeur}")
     return a + b * (c / d)
Beispiel #2
0
 def histogram(self):
     histo = "\n\t\t\t  c\t\tfreq\tfreq^\tfreq^%"
     for i in self.classes:
         interval = f"[{i.start}, {i.end}["
         baton = "".join("#" for i in range(i.effectif))
         centre = f"({_r(i.centre)})"
         freq = _r(i.frequence)
         freq_cum = _r(i.frequence_cum)
         freq_cum_pc = _r(i.frequence_cum * 100)
         histo += f"\n{interval}\t{centre}\t{freq} " \
             f"\t{freq_cum} \t{freq_cum_pc} \t{baton} {len(baton)}"
     return histo
Beispiel #3
0
 def mode(self):
     classe = self.classe_modale()[0]
     a = classe.start
     b = classe.effectif - classe.getPrev().effectif
     d = classe.effectif - classe.getNext().effectif
     c = self.interval
     return _r(a + (b * c) / (b + d))
Beispiel #4
0
 def _serialize_data(self):
     """Serialization des données"""
     return {
         'study': {
             'general': {
                 'effectifs': self.effectifs,
                 'min': min(self.serie),
                 'max': max(self.serie),
                 'etendue': self.etendue,
                 'mode': self.mode(),
             },
             'centre': {
                 'centre': _r(self.centre),
                 'moyenne': _r(self.moyenne),
                 'mediane': _r(self.mediane()),
             },
             'dispersion': {
                 'ecart_absolu_moyen': _r(self.EAM()),
                 'ecart_semi_inter_quartile': _r(self.ESI()),
                 'variance': _r(self.variance()),
                 'ecart_type': _r(self.ecart_type()),
                 'coefficient_de_variation': {
                     'data': _r(self.coefficient_variation()),
                     'info': self._get_coeff_info('variation', COEF_VAR)
                 }
             },
             'forme': {
                 'coefficient_asymetrie': {
                     'data': _r(self.coeff_asym()),
                     'info': self._get_coeff_info('asymetrie')
                 },
                 'coefficient_applatissement': {
                     'data': _r(self.coeff_appl()),
                     'info': self._get_coeff_info('applatissement')
                 }
             },
             'quantiles': {
                 'quartiles': self.quartiles(),
                 'deciles': self.deciles(),
             },
         }
     }
Beispiel #5
0
 def getData(self):
     data = self._serialize_data()
     general = data['study']['general']
     general['classe_modale'] = self.classe_modale()[0].range_repr
     data['plot'] = {
         "data": {i.range_repr: i.effectif
                  for i in self.classes},
         # Delete ?
         "classes": [i._serialize_data() for i in self.classes],
         "freq": {
             "ticks": [i.range_repr for i in self.classes],
             "eff": [int(i.effectif) for i in self.classes],
             "eff_pc": [_r(i.frequence_pc) for i in self.classes],
         },
         "cum": {
             'ticks': [f"{i.start}{' ' * 5}{i.end}" for i in self.classes],
             "freq": [_r(i.frequence_cum) for i in self.classes],
             "eff": [int(i.effectif_cum) for i in self.classes]
         }
     }
     return data
Beispiel #6
0
 def _quantiles(self, type, population):
     data = pd.DataFrame(population)
     position = [_r((1 / type) * i) for i in range(1, type)]
     quartiles = [_r(data.quantile(i)[0]) for i in position]
     return {c + 1: i for c, i in enumerate(quartiles)}
Beispiel #7
0
 def frequences(self, cumule=False, pourcent=False):
     p = lambda: 100 if pourcent else 1
     c = lambda x: x.frequence_cum if cumule else x.frequence
     return [_r(c(i) * p()) for i in self.classes]
Beispiel #8
0
 def quartiles(self):
     q1 = self._quantile(0.25)
     q2 = self.mediane()
     q3 = self._quantile(0.75)
     return {1: _r(q1), 2: _r(q2), 3: _r(q3)}