Beispiel #1
0
from core.siamese import Siamese


model = Siamese('shallow_mnist', input_shape=(28, 28, 3), embedding_size=64, strategy='batch_all')
model.load_weights('cache/cache-190213-131256/training/checkpoint-07.h5')
model.make_embeddings('data_mnist/train.csv', 'data_mnist/train', batch_size=200)
model.predict('data_mnist/train_subset')
model.make_csv('cache/cache-190213-131256/idx_to_whales_mapping.npy')
# model.load_embeddings('cache/cache-190205-070856/embeddings.pkl')
# model.load_predictions('cache/cache-190205-072026/predictions.pkl')
# model.make_kaggle_csv('cache/cache-190205-065005/idx_to_whales_mapping.npy')
# model.draw_tsne(model.predictions.values[:, 1:])





Beispiel #2
0
from core.siamese import Siamese

model = Siamese('mobilenet_like',
                input_shape=(672, 896, 3),
                embedding_size=128,
                strategy='batch_all')
# model.load_weights('cache/cache-190208-093118/training/checkpoint-03.h5')
# TODO mark pretrained mobilenet
model.load_weights('cache/cache-190208-093118/training/checkpoint-03.h5')
model.train('data/train.csv',
            'data/train',
            epochs=20,
            batch_size=32,
            learning_rate=0.0001,
            margin=2.0)
from core.siamese import Siamese

model = Siamese('mobilenet_like',
                input_shape=(672, 896, 3),
                embedding_size=128)
model.load_weights('trained/final_weights.h5')

#model.make_embeddings('data/train', 'data/train.csv', batch_size=5, meta_dir='data/meta')
model.load_embeddings('trained/embeddings.pkl')

model.predict('data/test', meta_dir='data/meta')
#model.load_predictions('trained/predictions.pkl')

model.make_kaggle_csv('data/meta/idx_to_whales_mapping.npy')
Beispiel #4
0
from core.siamese import Siamese

model = Siamese('mobilenet_like',
                input_shape=(672, 896, 3),
                embedding_size=128,
                strategy='batch_hard')
model.load_weights('cache/cache-190213-095205/training/checkpoint-07.h5')
model.load_embeddings('cache/cache-190213-113426/embeddings.pkl')
# model.make_embeddings('data/train.csv', 'data/train', batch_size=32)
# model.predict('data/test')
model.predict('data/train_subset')
model.make_csv('cache/cache-190208-093118/idx_to_whales_mapping.npy')
Beispiel #5
0
csv = 'val.csv'
#csv = 'train.csv'
mode = 'cos_angular'
#mode = 'classification'
input_shape = (224, 224, 3)
img_dir = '../data/train'

val = pd.read_csv(csv)
true_labels = val["Id"].values

if mode == 'classification':
    model = Siamese(input_shape=(224, 224, 3),
                    train_hidden_layers=True,
                    n_classes=8)
    model.load_weights('final_weights.h5')

    img_names = val['Image'].values
    bboxes = pd.read_pickle('../data/meta/bboxes.pkl').set_index('filename')
    whales_seq = WhalesSequence(img_dir,
                                bboxes=bboxes,
                                input_shape=input_shape,
                                x_set=img_names,
                                batch_size=1)
    pred = model.model.predict_generator(whales_seq, verbose=1)
    pred_labels = np.argmax(pred, axis=1).reshape(-1)

    for i, whale in enumerate(np.sort(np.unique(true_labels))):
        true_labels[np.where(true_labels == whale)] = i

elif mode == 'cos_angular':
Beispiel #6
0
from core.siamese import Siamese

model = Siamese('mobilenet_like',
                input_shape=(672, 896, 3),
                embedding_size=128)
model.load_weights('model/mobilenet_imagenet.h5')
#model.load_weights('trained/final_weights.h5')

#model.train('data/train', 'data/split_train.csv', meta_dir='D:\\IdeaProjects\\whales\\data\\meta', epochs=20, batch_size=24, learning_rate=0.001)
model.train('data/train',
            'data/train.csv',
            meta_dir='data/meta',
            epochs=500,
            batch_size=25,
            learning_rate=0.0005,
            margin=1.0)
from core.siamese import Siamese


model = Siamese('resnet_like_33', input_shape=(384, 512, 3), embedding_size=128, strategy='batch_all')
model.load_weights('trained/checkpoint-05.h5')
model.load_embeddings('trained/embeddings.pkl')
model.load_predictions('trained/predictions.pkl')

model.make_kaggle_csv('trained/idx_to_whales_mapping.npy')


Beispiel #8
0
from core.siamese import Siamese

model = Siamese(input_shape=(224, 224, 3), n_classes=5004)
model.load_weights('data/new_whalizer.h5')

model.predict_new_whales('data/test', 'data/submission_no_new_whales.csv')