Beispiel #1
0
u = np.zeros((N,N,Nt),dtype=complex);
v = np.zeros((N,N,Nt),dtype=complex);
h = np.zeros((N,N,Nt),dtype=complex);

S = np.load('time_series1.npy');

#Om = np.fft.fftfreq(Nt,dt_nd);
S_tilde = np.fft.fft(S);

for wi in range(1,Nt):
	print(wi);
	# Coefficients
	a1,a2,a3,a4,b4,c1,c2,c3,c4 = solver.SOLVER_COEFFICIENTS(Ro,Re,K_nd,f_nd,U0_nd,H0_nd,omega_nd,gamma_nd,dy_nd,N)
	# Solver
	if BC == 'NO-SLIP':
		solution = solver.NO_SLIP_SOLVER(a1,a2,a3,a4,f_nd,b4,c1,c2,c3,c4,S_tilde[wi]*Ro*Ftilde1_nd,S_tilde[wi]*Ro*Ftilde2_nd,S_tilde[wi]*Ftilde3_nd,N,N2);
	if BC == 'FREE-SLIP':
		solution = solver.FREE_SLIP_SOLVER(a1,a2,a3,a4,f_nd,b4,c1,c2,c3,c4,S_tilde[wi]*Ro*Ftilde1_nd,S_tilde[wi]*Ro*Ftilde2_nd,S_tilde[wi]*Ftilde3_nd,N,N2)

	u[:,:,wi], v[:,:,wi], h[:,:,wi] = solver.extractSols(solution,N,N2,BC);

u, v, h = solver.SPEC_TO_PHYS_STOCH(u,v,h,dx_nd,N);

# Normalise all solutions by the (non-dimensional) forcing amplitude. 
u = u / AmpF_nd;
v = v / AmpF_nd;
h = h / AmpF_nd;

mass = sum(sum(h[:,:,ts]))/N**2
print(mass)
Beispiel #2
0
    # If TEST==y0, matrix only needs to be defined once, but forcing must be defined each iteration.
    if TEST == 'y0':
        y0 = y0_set[ii]
        # Redefine y0 and the forcing in each run.
        y0_index = y0_index_set[ii]
        y0_nd = y0 / L
        # Forcing redefined each iteration.
        F1, F2, F3, F4, F5, F6, Ftilde1, Ftilde2, Ftilde3, Ftilde4, Ftilde5, Ftilde6 = forcing.forcing_cts(
            x, y, K, y0, r0, N, FORCE1, AmpF_nd, f, U, L, rho1_nd, rho2_nd, dx,
            dy)

    # Solver
    if BC == 'NO-SLIP':
        solution = solver.NO_SLIP_SOLVER(a1, a2, a3, a4, b1, b4, c1, c2, c3,
                                         c4, c5, d1, d3, d4, d5, e4, e5, f1,
                                         f2, f3, f4, Ro * Ftilde1,
                                         Ro * Ftilde2, Ftilde3, Ro * Ftilde4,
                                         Ro * Ftilde5, Ftilde6, N, N2)
    if BC == 'FREE-SLIP':
        solution = solver.FREE_SLIP_SOLVER(a1, a2, a3, a4, b1, b4, c1, c2, c3,
                                           c4, c5, d1, d3, d4, d5, e4, e5, f1,
                                           f2, f3, f4, Ro * Ftilde1,
                                           Ro * Ftilde2, Ftilde3, Ro * Ftilde4,
                                           Ro * Ftilde5, Ftilde6, N, N2)

    utilde, vtilde, htilde = solver.extractSols(solution, N, N2, BC)
    u, v, h = solver.SPEC_TO_PHYS(utilde, vtilde, htilde, T, Nt, dx, omega, N)

    # Before taking real part, can define an error calculator to call here.

    u = np.real(u)
def EEF_y0(y0_set, pi):
    # For every y0 value in y0_set all forcing parameters must be redefined.

    from inputFile_1L import *

    yn = len(y0_set)

    EEF_array = np.zeros((yn, 6, 2))

    for yi in range(
            0,
            yn):  # yi indexes the local EEF_array (i.e. computational domain)
        ii = y0_set[yi]
        # ii indexes arrays defined over global domain
        print(ii)
        if EEF_array[
                yi, 0,
                0] == 0:  # Check if any of the array has been updated after initialisation.

            y0 = y[ii]
            # Redefine y0 and the forcing in each run.
            y0_nd = y0 / L
            # Forcing
            if FORCE_TYPE == 'CTS':
                F1_nd, F2_nd, F3_nd, Ftilde1_nd, Ftilde2_nd, Ftilde3_nd = forcing.forcing_cts(
                    x_nd, y_nd, K_nd, y0_nd, r0_nd, N, FORCE, AmpF_nd, f_nd,
                    f0_nd, dx_nd, dy_nd)
            elif FORCE_TYPE == 'DCTS':
                F1_nd, F2_nd, F3_nd, Ftilde1_nd, Ftilde2_nd, Ftilde3_nd = forcing.forcing_dcts(
                    x_nd, y_nd, K_nd, y0_nd, r0_nd, N, FORCE, AmpF_nd, f_nd,
                    f0_nd, dx_nd, dy_nd)
            else:
                sys.exit('ERROR: Invalid forcing option selected.')

            # Solver
            if BC == 'NO-SLIP':
                solution = solver.NO_SLIP_SOLVER(a1, a2, a3, a4, f_nd, b4, c1,
                                                 c2, c3, c4, Ftilde1_nd,
                                                 Ftilde2_nd, Ftilde3_nd, N, N2)
            if BC == 'FREE-SLIP':
                solution = solver.FREE_SLIP_SOLVER2(a1, a2, a3, a4, f_nd, b4,
                                                    c1, c2, c3, c4, Ftilde1_nd,
                                                    Ftilde2_nd, Ftilde3_nd, N,
                                                    N2)

            utilde_nd, vtilde_nd, etatilde_nd = solver.extractSols(
                solution, N, N2, BC)
            u, v, h = solver.SPEC_TO_PHYS(utilde_nd, vtilde_nd, etatilde_nd,
                                          T_nd, dx_nd, omega_nd, N)

            # Take real part.
            u = np.real(u)
            v = np.real(v)
            h = np.real(h)

            # Normalise all solutions by the (non-dimensional) forcing amplitude.
            u = u / AmpF_nd
            v = v / AmpF_nd
            h = h / AmpF_nd

            # In order to calculate the vorticities of the system, we require full (i.e. BG + forced response) u and eta.
            h_full = np.zeros((N, N, Nt))
            u_full = np.zeros((N, N, Nt))
            for j in range(0, N):
                h_full[j, :, :] = h[j, :, :] + H0_nd[j]
                u_full[j, :, :] = u[j, :, :] + U0_nd[j]

            # Calculate PV fields and PV fluxes.
            PV_prime, PV_full, PV_BG = PV.potentialVorticity(
                u, v, h, u_full, h_full, H0_nd, U0_nd, N, Nt, dx_nd, dy_nd,
                f_nd)
            uq, Uq, uQ, UQ, vq, vQ = PV.fluxes(u, v, U0_nd, PV_prime, PV_BG, N,
                                               Nt)

            # Do footprints
            P, P_xav[yi, :] = PV.footprint_1L(u_full, v, h_full, PV_full,
                                              U0_nd, U, Umag, x_nd, y_nd, T_nd,
                                              dx_nd, dy_nd, dt_nd, AmpF_nd,
                                              FORCE, r0, nu, BG, Fpos, ts,
                                              period_days, N, Nt, GAUSS)
            EEF_array[yi, :], l_array[yi, :] = PV.EEF(P_xav[yi, :], y_nd,
                                                      y0_nd, dy_nd, omega_nd,
                                                      N)

    filename = 'EEF_array_' + str(pi)
    np.save(filename, EEF_array)
Beispiel #4
0
def RSW_main():

    # Forcing
    #plotting.forcingPlot_save(x_grid,y_grid,F3_nd[:,0:N],FORCE,BG,Fpos,N);
    #F1_nd, F2_nd, F3_nd = forcing.forcingInv(Ftilde1_nd,Ftilde2_nd,Ftilde3_nd,x_nd,y_nd,dx_nd,N);
    #F12, F22 = forcing.F12_from_F3(F3_nd,f_nd,dx_nd,dy_nd,N,N);
    #plotting.forcingPlots(x_nd[0:N],y_nd,Ro*F1_nd,Ro*F2_nd,F3_nd,Ftilde1_nd,Ftilde2_nd,Ftilde3_nd,N);

    # Coefficients
    a1, a2, a3, a4, b4, c1, c2, c3, c4 = solver.SOLVER_COEFFICIENTS(
        Ro, Re, K_nd, f_nd, U0_nd, H0_nd, omega_nd, gamma_nd, dy_nd, N)
    # Solver
    if BC == 'NO-SLIP':
        solution = solver.NO_SLIP_SOLVER(a1, a2, a3, a4, f_nd, b4, c1, c2, c3,
                                         c4, Ro * Ftilde1_nd, Ro * Ftilde2_nd,
                                         Ftilde3_nd, N, N2)
    if BC == 'FREE-SLIP':
        #solution = solver.FREE_SLIP_SOLVER(a1,a2,a3,a4,f_nd,b4,c1,c2,c3,c4,Ro*Ftilde1_nd,Ro*Ftilde2_nd,Ftilde3_nd,N,N2)
        solution = solver.FREE_SLIP_SOLVER4(a1, a2, a3, a4, f_nd, b4, c1, c2,
                                            c3, c4, Ro * Ftilde1_nd,
                                            Ro * Ftilde2_nd, Ro * Ftilde3_nd,
                                            N, N2)

    utilde_nd, vtilde_nd, etatilde_nd = solver.extractSols(solution, N, N2, BC)

    #utilde_nd, vtilde_nd, etatilde_nd = diagnostics.selectModes(utilde_nd,vtilde_nd,etatilde_nd,6,False,N)
    u, v, h = solver.SPEC_TO_PHYS(utilde_nd, vtilde_nd, etatilde_nd, T_nd,
                                  dx_nd, omega_nd, N)

    # Take real part
    u = np.real(u)
    v = np.real(v)
    h = np.real(h)

    # Normalise all solutions by the (non-dimensional) forcing amplitude.
    u = u / AmpF_nd
    v = v / AmpF_nd
    h = h / AmpF_nd

    #np.save('u.npy',u)
    #np.save('v.npy',v)
    #np.save('h.npy',h)

    #sys.exit()

    # In order to calculate the vorticities/energies of the system, we require full (i.e. BG + forced response) u and eta.
    u_full = diagnostics.fullFlow(u, U0_nd)
    h_full = diagnostics.fullFlow(h, H0_nd)

    #====================================================

    # Energy

    if doEnergy:
        KE_BG, KE_BG_tot, PE_BG, PE_BG_tot = energy.energy_BG(
            U0_nd, H0_nd, Ro, y_nd, dy_nd, N)
        KE, KE_tot = energy.KE(u_full, v, h_full, x_nd, y_nd, dx_nd, dy_nd, N)
        PE, PE_tot = energy.PE(h_full, Ro, x_nd, y_nd, dx_nd, dy_nd, N)

        E = KE + PE
        #E_tot = KE_tot + PE_tot

        Ef, Ef_av = energy.budgetForcing(u_full, v, h_full, F1_nd, F2_nd,
                                         F3_nd, Ro, N, T_nd, omega_nd, Nt)
        #Ef, Ef2_av = energy.budgetForcing2(U0_nd,H0_nd,u,v,h,F1_nd,F2_nd,F3_nd,Ro,N,T_nd,omega_nd,Nt)
        #Ed, Ed_av = energy.budgetDissipation(u_full,v,h_full,Ro,Re,gamma_nd,dx_nd,dy_nd,T_nd,Nt)
        Ed, Ed_av = energy.budgetDissipation2(U0_nd, H0_nd, u, v, h, Ro, Re,
                                              gamma_nd, dx_nd, dy_nd, T_nd, Nt,
                                              N)
        Eflux, Eflux_av, uEflux_av, vEflux_av = energy.budgetFlux(
            u_full, v, h_full, Ro, dx_nd, dy_nd, T_nd, Nt)

        print(np.sum(Ef_av))
        print(np.sum(Ed_av))

        plt.subplot(221)
        plt.contourf(Ef_av)
        plt.grid()
        plt.colorbar()

        plt.subplot(222)
        plt.contourf(Ed_av)
        plt.grid()
        plt.colorbar()

        plt.subplot(223)
        plt.contourf(vEflux_av)
        plt.grid()
        plt.colorbar()

        plt.subplot(224)
        plt.contourf(-Ed_av - Ef_av)
        plt.grid()
        plt.colorbar()
        plt.show()

        #uE, vE = energy.flux(KE,u,v)
        #Econv, Econv_xav = energy.conv(uE,vE,T_nd,Nt,x_nd,dx_nd,y_nd,dy_nd)
        #vE_av = diagnostics.timeAverage(vE,T_nd,Nt)
        #plt.contourf(vE_av); plt.colorbar(); plt.show()

        #plt.subplot(121); plt.contourf(Econv); plt.colorbar();
        #plt.subplot(122); plt.plot(Econv_xav); plt.show()

        #quit()

    #====================================================

    if doCorr:

        M = corr.M(u, v, T_nd)
        N_ = corr.N(u, v, T_nd)
        K = corr.K(u, v, T_nd)
        D = corr.D(u, v, 1, dx_nd, dy_nd)
        Curl_uD = corr.Curl_uD(u, v, D, T, dx_nd, dy_nd)
        theta = corr.orientation(M, N_)

        Mnorm = corr.Mnorm(u, v, T_nd)
        Nnorm = corr.Nnorm(u, v, T_nd)

        Dv, Du = corr.Curl_uD_components(u, v, D, T, dx_nd, dy_nd)

        #corr.plotComponents(x_nd,y_nd,M,N_,K,Du)

        plotting_bulk.plotKMN(K, Mnorm, Nnorm, x_grid, y_grid, N, 0, 2, '')
        plt.show()

        #N_ /= diagnostics.domainInt(K,x_nd,dx_nd,y_nd,dy_nd)

        N_av = np.trapz(diagnostics.extend(N_), x_nd, dx_nd, axis=1)
        Nyy = diagnostics.diff(diagnostics.diff(N_, 0, 0, dy_nd), 0, 0, dy_nd)
        Nyy_av = np.trapz(diagnostics.extend(Nyy), x_nd, dx_nd, axis=1)
        Curl_uD_av = np.trapz(diagnostics.extend(Curl_uD), x_nd, dx_nd, axis=1)

        #np.save('M',M); np.save('N',N_); np.save('Nyy',Nyy)

        lim = np.max(np.abs(N_)) / 2.
        plt.figure(figsize=[12, 6])
        plt.subplot(121)
        plt.pcolor(x_grid, y_grid, N_, cmap='bwr', vmin=-lim, vmax=lim)
        plt.xlim(-0.1, 0.1)
        plt.ylim(-.1, 0.1)
        plt.text(-0.08, 0.08, 'N', fontsize=18)
        plt.xlabel('x', fontsize=18)
        plt.ylabel('y', fontsize=18)
        plt.grid()
        plt.colorbar()

        plt.subplot(122)
        plt.plot(N_av, y_nd)
        plt.ylim(-.1, .1)
        plt.xlabel('<N>', fontsize=18)
        plt.grid()

        plt.tight_layout()
        plt.show()

        #plt.figure(figsize=[12,6])
        #plt.subplot(121)
        #plt.contourf(x_nd[0:N],y_nd,Nyy)
        #plt.xlim(-0.1,0.1)
        #plt.ylim(-0.1,0.1)
        #plt.colorbar()
        #plt.subplot(122)
        #plt.plot(Nyy_av,y_nd)
        #plt.show()

        #corr.plotOrientation(theta,K,x_nd,y_nd)
        #uav = np.trapz(diagnostics.extend(Du),x_nd,dx_nd,axis=1)
        #vav = np.trapz(diagnostics.extend(Dv),x_nd,dx_nd,axis=1)

        #plt.plot(uav,label='u')
        #plt.plot(vav,label='v')
        #plt.plot(Curl_uD_av,label='full')
        #plt.legend()
        #plt.show()

        # Correlation.
        # Central half?
        #cs = N / 4;
        #ce = N - N / 4;
        #corr = corr.arrayCorrTime(u[cs:ce,cs:ce,:],v[cs:ce,cs:ce,:]);
        #print corr

        #quit()

    #====================================================

    # Error - if calculated, should be done before real part of solution is taken
    if errorPhys:
        e1, e2, e3 = diagnostics.error(u, v, h, dx_nd, dy_nd, dt_nd, U0_nd,
                                       H0_nd, Ro, gamma_nd, Re, f_nd, F1_nd,
                                       F2_nd, F3_nd, T_nd, ts, omega_nd, N)
        e = np.sqrt((e1**2 + e2**2 + e3**2) / 3.0)
        print 'Error = ' + str(e) + '. Error split = ' + str(e1) + ', ' + str(
            e2) + ', ' + str(e3)
    if errorSpec:
        error_spec = np.zeros((3, N))
        # An array to save the spectral error at each wavenumber for each equation.
        for i in range(0, N):
            error_spec[:,i] = diagnostics.specError(utilde_nd[:,i],vtilde_nd[:,i],etatilde_nd[:,i],Ftilde1_nd[:,i],Ftilde2_nd[:,i],Ftilde3_nd[:,i],a1[:,i],a2,a3,a4[i],\
          b4,c1[:,i],c2,c3,c4[:,i],f_nd,Ro,K_nd[i],H0_nd,y_nd,dy_nd,N)
        for eq in range(0, 3):
            error = sum(error_spec[eq, :]) / N
            print('Error' + str(int(eq + 1)) + '=' + str(error))

    #====================================================

    # Momentum footprints
    #====================================================

    if doMomentum:
        uu, uv, vv = momentum.fluxes(u, v)
        Mu, Mv, Mu_xav, Mv_xav = momentum.footprint(uu, uv, vv, x_nd, T_nd,
                                                    dx_nd, dy_nd, N, Nt)
        #plotting.MomFootprints(Mu,Mv,Mu_xav,Mv_xav);

        Mumax = np.max(Mu_xav)

        plt.plot(Mu_xav / Mumax, y_nd, linewidth=2., color='k')
        plt.text(-0.4, 0.4, str(Mumax))
        plt.xlabel('Zonal mom. flux convergence', fontsize=18)
        plt.ylabel('y', fontsize=18)
        plt.ylim([-.5, .5])
        plt.yticks((-1. / 2, -1. / 4, 0, 1. / 4, 1. / 2))
        plt.grid()
        plt.show()

        if False:

            plt.subplot(121)
            plt.pcolor(x_grid, y_grid, Mu, cmap='bwr', vmin=-.5, vmax=.5)
            plt.xticks((-1. / 2, -1. / 4, 0, 1. / 4, 1. / 2))
            plt.yticks((-1. / 2, -1. / 4, 0, 1. / 4, 1. / 2))
            plt.xlabel('x', fontsize=16)
            plt.ylabel('y', fontsize=16)
            plt.axis([x_grid.min(),
                      x_grid.max(),
                      y_grid.min(),
                      y_grid.max()])
            plt.grid(b=True, which='both', color='0.65', linestyle='--')
            plt.colorbar()

            plt.subplot(122)
            plt.plot(Mu_xav, y_nd)
            plt.xlabel('y')
            plt.show()

            plt.subplot(121)
            plt.pcolor(x_grid, y_grid, Mv, cmap='bwr', vmin=-1., vmax=1.)
            plt.xticks((-1. / 2, -1. / 4, 0, 1. / 4, 1. / 2))
            plt.yticks((-1. / 2, -1. / 4, 0, 1. / 4, 1. / 2))
            plt.xlabel('x', fontsize=16)
            plt.ylabel('y', fontsize=16)
            plt.axis([x_grid.min(),
                      x_grid.max(),
                      y_grid.min(),
                      y_grid.max()])
            plt.grid(b=True, which='both', color='0.65', linestyle='--')

            plt.subplot(122)
            plt.plot(Mv_xav, y_nd)

            plt.tight_layout()
            plt.show()

        EEF_u, EEF_v = momentum.EEF_mom(Mu_xav, Mv_xav, y_nd, y0_nd, y0_index,
                                        dy_nd, omega_nd, N)

        #print(EEF_u, EEF_v);

    # PV and PV footprints
    #====================================================

    # Calculate PV fields, footprints and equivalent eddy fluxes (EEFs)
    if doPV:
        PV_prime, PV_full, PV_BG = PV.potentialVorticity(
            u, v, h, u_full, h_full, H0_nd, U0_nd, N, Nt, dx_nd, dy_nd, f_nd,
            Ro)
        #PV_prime1, PV_prime2, PV_prime3 = PV.potentialVorticity_linear(u,v,h,H0_nd,U0_nd,N,Nt,dx_nd,dy_nd,f_nd,Ro)
        uq, Uq, uQ, UQ, vq, vQ = PV.fluxes(u, v, U0_nd, PV_prime, PV_BG, N, Nt)
        # Keep these next two lines commented out unless testing effects of normalisation.
        # uq, Uq, uQ, UQ, vq, vQ = uq/AmpF_nd**2, Uq/AmpF_nd**2, uQ/AmpF_nd**2, UQ/AmpF_nd**2, vq/AmpF_nd**2, vQ/AmpF_nd**2
        # PV_prime, PV_full = PV_prime/AmpF_nd, PV_full/AmpF_nd

        if doFootprints:
            if footprintComponents:
                P, P_uq, P_uQ, P_Uq, P_vq, P_vQ, P_xav, P_uq_xav, P_uQ_xav, P_Uq_xav, P_vq_xav, P_vQ_xav = PV.footprintComponents(
                    uq, Uq, uQ, vq, vQ, x_nd, T_nd, dx_nd, dy_nd, N, Nt)
                #plotting.footprintComponentsPlot(uq,Uq,uQ,vq,vQ,P,P_uq,P_Uq,P_uQ,P_vq,P_vQ,P_xav,P_uq_xav,P_uQ_xav,P_Uq_xav,P_vq_xav,P_vQ_xav,x_nd,y_nd,N,Nt);
                #plotting.plotPrimaryComponents(P_uq,P_vq,P_uq_xav,P_vq_xav,x_nd,y_nd,FORCE,BG,Fpos,N);
            else:
                P, P_xav = PV.footprint(uq, Uq, uQ, UQ, vq, vQ, x_nd, T_nd,
                                        dx_nd, dy_nd, N, Nt)

            if doEEFs:

                from scipy.ndimage.measurements import center_of_mass
                iii = center_of_mass(np.abs(P_xav))[0]
                i1 = int(iii)
                i2 = int(i1 + 1)
                r = iii - i1
                #print(iii,i1,i2,r)

                com = y_nd[int(iii)]
                #print(y0_index-iii)
                if footprintComponents:
                    EEF_array = PV.EEF_components(P_xav, P_uq_xav, P_uQ_xav,
                                                  P_Uq_xav, P_vq_xav, P_vQ_xav,
                                                  y_nd, y0_nd, y0_index, dy_nd,
                                                  omega_nd, N)
                    # This returns EEF_array, an array with the following structure:
                    # EEF_array = ([EEF_north,EEF_south],[uq_north,uq_south],[Uq_north,Uq_south],[uQ_north,uQ_south],[vq_north,vq_south],[vQ_north,vQ_south]).
                    EEF_north = EEF_array[0, 0]
                    EEF_south = EEF_array[0, 1]
                else:
                    EEF, l = PV.EEF(P_xav, y_nd, com, int(iii), dy_nd, N)
                    # These lines for Gaussian EEFs, when com jumps from 1 grid point to next, need to smooth EEF.
                    #EEF1, l = PV.EEF(P_xav,y_nd,y_nd[i1],i1,dy_nd,N)
                    #EEF2, l = PV.EEF(P_xav,y_nd,y_nd[i2],i2,dy_nd,N)
                    #EEF_ = (1 - r) * EEF1 + r * EEF2
                    EEF_north = EEF[0]
                    EEF_south = EEF[1]
                    EEF = EEF_north - EEF_south
                    print(EEF)

        Pmax = np.max(abs(P_xav))

        plt.plot(P_xav / Pmax, y_nd, linewidth=2., color='k')
        plt.text(-0.4, 0.4, str(Pmax))
        plt.xlabel('PV flux convergence', fontsize=18)
        plt.ylabel('y', fontsize=18)
        plt.ylim([-.5, .5])
        plt.yticks((-1. / 2, -1. / 4, 0, 1. / 4, 1. / 2))
        plt.grid()
        plt.show()

    # Buoyancy footprints
    #====================================================

    if doThickness:
        # Should these be zero, according to conservation of mass?
        Pb, Pb_xav = thickness.footprint(u_full, v, h_full, x_nd, y_nd, T_nd,
                                         dx_nd, dy_nd, dt_nd, N, Nt)

    #output.ncSave(utilde_nd,vtilde_nd,etatilde_nd,u,v,h,x_nd,y_nd,K_nd,T_nd,PV_full,PV_prime,PV_BG,Pq,EEFq,N,Nt);

    #sys.exit()

    #====================================================

    # Plots
    #====================================================
    #====================================================

    # Call the function that plots the forcing in physical and physical-spectral space.
    if plotForcing:
        plotting.forcingPlots(x_nd, y_nd, F1_nd, F2_nd, F3_nd, Ftilde1_nd,
                              Ftilde2_nd, Ftilde3_nd, N)
        #forcing_1L.forcingInv(Ftilde1_nd,Ftilde2_nd,Ftilde3_nd,x_nd,y_nd,dx_nd,N); # For diagnostic purposes

    # Background state plots (inc. BG SSH, BG flow, BG PV)
    if plotBG:
        plotting.bgPlots(y_nd, H0_nd, U0_nd, PV_BG)

    # Soltuion Plots
    if plotSol:
        plotting.solutionPlots(x_nd, y_nd, u, v, h, ts, FORCE, BG, Fpos, N,
                               x_grid, y_grid, True)
        #plotting.solutionPlots_save(x_nd,y_nd,u,v,h,ts,FORCE,BG,Fpos,N,x_grid,y_grid,True);
        #plotting.solutionPlotsDim(x,y,u,v,eta,ts,L,FORCE,BG,Fpos,N);

    # Plots of PV and zonally averaged PV
    if doPV:
        if plotPV:
            #plotting.pvPlots(PV_full,PV_prime,x_nd,y_nd);
            plotting.pvPlots_save(PV_full, PV_prime, P, P_xav, x_nd, y_nd, ts,
                                  FORCE, BG, Fpos, N, U0_str, x_grid, y_grid,
                                  True)
        if plotPV_av:
            plotting.PV_avPlots(x_nd, y_nd, PV_prime, PV_BG, PV_full, ts,
                                FORCE, BG, Fpos, N)
        if doFootprints:
            if plotFootprint:
                plotting.footprintPlots(x_nd, y_nd, P, P_xav, Fpos, BG, FORCE,
                                        nu, r0, period_days, U0_nd, U, N)

    # Phase and amplitude
    if plotPhaseAmp:
        plotting.solutionPlotsAmp(x_nd, y_nd, u, v, h, ts, FORCE, BG, Fpos, N)
        plotting.solutionPlotsPhase(x_nd, y_nd, u, v, h, ts, FORCE, BG, Fpos,
                                    N)
Beispiel #5
0
def EIG_DECOMP_main(U0_nd, H0_nd, dim):
    '''
	Load outputted theta and val and post-process. Function does multiple things. 
	(1) For a given U0-value calculate the SW solution. Rebuild solution with Nm-most dominant modes
	to see how many are required for p % accuracy. Does this depend on k, U0?
	(2) Plots of weights at specific wavenumber (and how quickly they decay), and plots of weights over all wavenumbers and BG flows.
	(3) Phase speeds and 'average' phase speeds. 
	'''
    # Dimensions
    Nm = dim
    # How many modes to use in the decomposition at each wavenumber (dim is maximum).
    Nk = N

    # The 1L SW solution
    #====================================================

    I = np.complex(0.0, 1.0)

    SOL = 'NEW'

    # Define the solution in (k,y)-space - can be from FILE or a NEW run.
    if SOL == 'FILE':
        solution = np.load(
            '/home/mike/Documents/GulfStream/Code/DATA/1L/REF/solution_NORTH256.npy'
        )
    if SOL == 'NEW':
        # Forcing
        #if FORCE_TYPE == 'CTS':
        #	F1_nd, F2_nd, F3_nd, Ftilde1_nd, Ftilde2_nd, Ftilde3_nd = forcing.forcing_cts(x_nd,y_nd,K_nd,y0_nd,r0_nd,N,FORCE,AmpF_nd,f_nd,f0_nd,dx_nd,dy_nd);
        #elif FORCE_TYPE == 'DCTS':
        #	F1_nd, F2_nd, F3_nd, Ftilde1_nd, Ftilde2_nd, Ftilde3_nd = forcing.forcing_dcts(x_nd,y_nd,K_nd,y0_nd,r0_nd,N,FORCE,AmpF_nd,f_nd,f0_nd,dx_nd,dy_nd)
        #elif FORCE_TYPE == 'DELTA':
        #	F1_nd, F2_nd, F3_nd, Ftilde1_nd, Ftilde2_nd, Ftilde3_nd = forcing.forcing_delta(AmpF_nd,y0_index,dx_nd,N);
        # Coefficients
        a1, a2, a3, a4, b4, c1, c2, c3, c4 = solver.SOLVER_COEFFICIENTS(
            Ro, Re, K_nd, f_nd, U0_nd, H0_nd, omega_nd, gamma_nd, dy_nd, N)
        # Solver
        if BC == 'NO-SLIP':
            solution = solver.NO_SLIP_SOLVER(a1, a2, a3, a4, f_nd, b4, c1, c2,
                                             c3, c4, Ro * Ftilde1_nd,
                                             Ro * Ftilde2_nd, Ftilde3_nd, N,
                                             N2)
        elif BC == 'FREE-SLIP':
            solution = solver.FREE_SLIP_SOLVER(a1, a2, a3, a4, f_nd, b4, c1,
                                               c2, c3, c4, Ro * Ftilde1_nd,
                                               Ro * Ftilde2_nd, Ftilde3_nd, N,
                                               N2)
        else:
            sys.exit('ERROR: choose valid BC')

    solution = solution / AmpF_nd

    print('solved')

    #====================================================

    # Eigenmode analysis
    #====================================================
    #====================================================

    # Initisialastion steps
    #====================================================

    VEC = 'FILE'
    # From FILE, requires pre-saved vectors which take up lots of memory.
    LOOP = 'FULL'
    # FULL, PART

    if LOOP == 'FULL':
        loop = range(0, N)
        Nk_neg = 9
        Nk_pos = 8
    elif LOOP == 'PART':
        Nk_neg = 6
        Nk_pos = 6
        # How many positive/negative wavenumbers to perform this decomposition at.
        loop = it.chain(range(0, Nk_pos + 1), range(N - Nk_neg, N))
        Nk = Nk_neg + Nk_pos + 1
    else:
        sys.exit('ERROR: LOOP must be FULL or PART.')

    theta = np.zeros((Nm, Nk), dtype=complex)
    # Initialise the set of weights; these will be complex.
    proj = np.zeros((dim, N), dtype=complex)
    # The projection. Sums the Nm most dominant modes, each of length dim, for Nk i-values.
    dom_index = np.zeros((Nm, Nk), dtype=int)
    # To store the indices of the Nm-most dominant modes.

    var = np.zeros((Nk))
    mean = np.zeros((Nk))

    scatter_k = np.zeros(Nm * Nk)
    # An empty array for saving k-values, for use in the scatter plot of dominant modes.
    scatter_l = np.zeros(Nm * Nk)
    # An empty array for storing the count, psuedo-wavenumber l.
    scatter_p = np.zeros(Nm * Nk)
    # An empty array for storing periods of the dominant wavenumbers.
    theta_abs = np.zeros((Nm, Nk))
    # For storing the absolute value of each weight.
    theta_abs_tot = np.zeros(Nk)
    # For storing sum of absolute values of each set of decomposition weights.
    cx = np.zeros((Nm, Nk))
    # For storing the zonal phase speed of each mode,
    cy = np.zeros((Nm, Nk))
    # and the meridional phase speed.
    p = np.zeros((Nk, 2))
    # For storing weighted phase speeds at each wavenumber. (i=0 => y)

    # Analysis
    #====================================================

    # Loop over desired wavenumbers (for tests, this may not be the full range of wavenumbers)
    # ii indexes arrays storing information at ALL wavenumbers k
    # i indexes arrays storing information ONLY at wavenumbers used in the decomposition.
    for ii in loop:

        print(' ')
        print('ii = ' + str(ii))
        k = K_nd[ii]
        print('k = ' + str(k))
        i = k % Nk
        print('i = ' + str(i))
        i = int(i + 0.01)

        # Eigenmodes, eigenvalues and count.
        #====================================================

        # This section returns three arrays: 1. val, 2. vec, 3. count
        # 1.) val = val[0:dim] stores the eigenvalues/frequencies.
        # 2.) vec = vec[]
        # 3.) count = count[]

        # Run the solver for the current k-value.
        if VEC == 'NEW':  # Solve the eigenmode problem anew.
            a1, a2, a3, a4, b1, b4, c1, c2, c3, c4 = eigSolver.EIG_COEFFICIENTS2(
                Ro, Re, K_nd, f_nd, U0_nd, H0_nd, gamma_nd, dy_nd, N)
            if BC == 'NO-SLIP':
                val, u_vec, v_vec, h_vec = eigSolver.NO_SLIP_EIG(
                    a1, a2, a3, a4, b1, b4, c1, c2, c3, c4, N, N2, ii, True)
            if BC == 'FREE-SLIP':
                val, vec = eigSolver.FREE_SLIP_EIG(a1, a2, a3, a4, b1, b4, c1,
                                                   c2, c3, c4, N, N2, ii,
                                                   False)

            # Order modes by meridional pseudo wavenumber (count).
            count, i_count = eigDiagnostics.orderEigenmodes(
                vec, val, x_nd, k, T_nd[ts], N, dim, BC)
            #count, i_count = eigDiagnostics.orderEigenmodes2(vec,val,N,False)
            count = count[i_count]
            vec = vec[:, i_count]
            val = val[i_count]

            # Each eigenmode is currently a unit vector, but we normalise so that each mode contains unit energy.
            #==

            # Extract the three components.
            u_vec, v_vec, h_vec = eigDiagnostics.vec2vecs(vec, N, dim, BC)

            # Calculate the contained in each component.
            E = np.zeros(dim)
            for wi in range(0, dim):
                EE = energy.E_anomaly_EIG(u_vec[:, wi], v_vec[:, wi],
                                          h_vec[:, wi], H0_nd, U0_nd, Ro, y_nd,
                                          dy_nd)
                # Normalise each vector by the square root of the energy.
                u_vec[:,
                      wi], v_vec[:, wi], h_vec[:, wi] = u_vec[:, wi] / np.sqrt(
                          EE), v_vec[:,
                                     wi] / np.sqrt(EE), h_vec[:,
                                                              wi] / np.sqrt(EE)

            # Rebuild the vector. This should have unit energy perturbation.
            # (There are more direct ways of executing this normalisation, but this method is the safest.)
            vec = eigDiagnostics.vecs2vec(u_vec, v_vec, h_vec, N, dim, BC)

            # Comment out this line, depending on which EIG_COEFFICIENTS function is being called.
            #val = val / (2. * np.pi * I * Ro);

        elif VEC == 'FILE':  # Load eigenmodes and eigenvalues from file.

            # Low-res
            path = '/home/mike/Documents/GulfStream/RSW/DATA/1L/EIG/128/west/'
            #path = '/home/mike/Documents/GulfStream/RSW/DATA/1L/EIG/128/nu='+str(int(nu))+'/';
            ncFile = path + 'RSW1L_Eigenmodes_k' + str(int(k)) + '_N129.nc'

            # High-res
            #path = '/media/mike/Seagate Expansion Drive/Documents/GulfStream/RSW/DATA/1L/EIG/256/16/'
            #path =  '/home/mike/Documents/GulfStream/RSW/DATA/1L/EIG/256/west/';
            #ncFile = path + 'RSW1L_Eigenmodes_k' + str(int(k)) + '_N257.nc';
            print('Reading from ' + ncFile + '...')
            val, vec, count = output_read.ncReadEigenmodes(ncFile)
        else:
            sys.exit('VEC must be FILE or NEW')

        # Expresses the eigenvalues (frequencies) in terms of periods (units days).
        freq = np.real(val)
        period_days = T_adv / (freq * 24. * 3600.)

        dim = np.size(val)

        #====================================================

        # Now we have the solution and the eigenmodes.
        # The decomposition follows the following steps:
        # 1. Define the solution to be decomposed as Phi.
        # 2. Decompose Phi into vec using a linear solver; theta_tmp stores the weights.
        # 3. Arrange the weights in descending order according to their complex amplitude.
        # 4. Sum the Nm-most dominant weights.

        Phi = solution[:, ii]
        # 1. Assign the solution corresponding to wavenumber k=K_nd[ii].

        theta_tmp = np.linalg.solve(vec, Phi)
        # 2.
        theta_abs_tmp = np.abs(theta_tmp)
        dom_index_tmp = np.argsort(-theta_abs_tmp)
        # 3. The indices of the modes, ordered by 'dominance'.
        theta_abs_tot[i] = sum(theta_abs_tmp[dom_index_tmp[0:dim]])
        # Change dim to Nm if necessary

        # Now loop over each mode (at wavenumber k)
        for mi in range(0, Nm):
            #print(dom_index_tmp[mi]);
            #print('count = ' + str(count[dom_index_tmp[mi]]));
            #print(np.abs(theta_tmp[dom_index_tmp[mi]]));

            dom_index[mi, i] = dom_index_tmp[mi]
            theta[mi, i] = theta_tmp[dom_index_tmp[mi]]
            # All weights are now ordered in terms of their absolute value.

            # Absolute value of each mode
            theta_abs[mi, i] = np.abs(theta[mi, i])

            # Zonal & meridional phase speed of each mode
            cx[mi, i] = freq[dom_index[mi, i]] / k
            if count[dom_index[mi, i]] != 0:
                cy[mi, i] = freq[dom_index[mi, i]] / count[dom_index[mi, i]]

            if mi < 95:
                # The projection.
                proj[:, ii] = proj[:, ii] + theta_tmp[
                    dom_index_tmp[mi]] * vec[:, dom_index_tmp[mi]]
                # 4.

            # Scatter plot arrays.
            scatter_k[i * Nm + mi] = k
            scatter_l[i * Nm + mi] = count[dom_index[mi, i]]
            scatter_p[i * Nm + mi] = period_days[dom_index[mi, i]]
            #plt.plot(vec[0:N,dom_index_tmp[mi]],y_nd);
            #plt.ylim(-0.5,0.5);
            #plt.show();
        #plt.plot(theta_abs[:,i]);
        #plt.show();

        # Statistics: mean, variance, weighted average
        # Should normalise so that all have the same mean (i.e. mean = 1/Nm);
        mean[i] = theta_abs_tot[i] / Nm
        var[i] = sum((theta_abs[:, i] - mean[i])**2) / (Nm * mean[i]**2)
        p[i, 1] = sum((theta_abs[:, i] * cx[:, i])) / theta_abs_tot[i]
        p[i, 0] = sum((theta_abs[:, i] * cy[:, i])) / theta_abs_tot[i]
        print(cy[10, i])

    return theta, mean, var, p, proj, solution, scatter_k, scatter_l, scatter_p
Beispiel #6
0
def RSW_main():

    # Coefficients
    a1, a2, a3, a4, b1, b4, c1, c2, c3, c4, c5, d1, d3, d4, d5, e4, e5, f1, f2, f3, f4 = solver.SOLVER_COEFFICIENTS(
        Ro, Re, K, f, U1, U2, H1, H2, rho1_nd, rho2_nd, omega, gamma, dy, N)

    # Solver
    if BC == 'NO-SLIP':
        solution = solver.NO_SLIP_SOLVER(a1, a2, a3, a4, b1, b4, c1, c2, c3,
                                         c4, c5, d1, d3, d4, d5, e4, e5, f1,
                                         f2, f3, f4, Ro * Ftilde1,
                                         Ro * Ftilde2, Ftilde3, Ro * Ftilde4,
                                         Ro * Ftilde5, Ftilde6, N, N2)
    if BC == 'FREE-SLIP':
        solution = solver.FREE_SLIP_SOLVER4(a1, a2, a3, a4, b1, b4, c1, c2, c3,
                                            c4, c5, d1, d3, d4, d5, e4, e5, f1,
                                            f2, f3, f4, Ro * Ftilde1,
                                            Ro * Ftilde2, Ftilde3,
                                            Ro * Ftilde4, Ro * Ftilde5,
                                            Ftilde6, N, N2)

    #===================================================

    utilde, vtilde, htilde = solver.extractSols(solution, N, N2, BC)
    u, v, h = solver.SPEC_TO_PHYS(utilde, vtilde, htilde, T, Nt, dx, omega, N)

    # Before taking real part, can define an error calculator to call here.

    u = np.real(u)
    v = np.real(v)
    h = np.real(h)

    #u = u / AmpF_nd
    #v = v / AmpF_nd
    #h = h / AmpF_nd

    # For use in PV and footprint calculations: the 'full' zonal velocities and interface thicknesses.
    u_full = np.zeros((N, N, Nt, 2))
    h_full = np.zeros((N, N, Nt, 2))
    for j in range(0, N):
        u_full[j, :, :, 0] = u[j, :, :, 0] + U1[j]
        u_full[j, :, :, 1] = u[j, :, :, 1] + U2[j]
        h_full[j, :, :, 0] = h[j, :, :, 0] + H1[j]
        h_full[j, :, :, 1] = h[j, :, :, 1] + H2[j]

    # Call function calculate PV in each layer.
    q = np.zeros((N, N, Nt, 2))
    q_full = np.zeros((N, N, Nt, 2))
    Q = np.zeros((N, 2))
    q[:, :, :,
      0], q_full[:, :, :,
                 0], Q[:, 0] = PV.vort(u[:, :, :, 0], v[:, :, :, 0], h[:, :, :,
                                                                       0],
                                       u_full[:, :, :, 0], h_full[:, :, :, 0],
                                       H1, U1, N, Nt, dx, dy, f)
    q[:, :, :,
      1], q_full[:, :, :,
                 1], Q[:, 1] = PV.vort(u[:, :, :, 1], v[:, :, :, 1], h[:, :, :,
                                                                       1],
                                       u_full[:, :, :, 1], h_full[:, :, :, 1],
                                       H2, U2, N, Nt, dx, dy, f)

    # Calculate footprints using previously calculated PV. Most interseted in the upper layer.
    P, P_xav = PV.footprint(u_full[:, :, :, 0], v[:, :, :, 0],
                            q_full[:, :, :, 0], x, y, dx, dy, T, Nt)

    # PLOTS
    #====================================================

    plt.contourf(u[:, :, 0, 1])
    plt.colorbar()
    plt.show()
    quit()
    plotting.solutionPlots(x, y, x_grid, y_grid, u, v, h, ts, N, False)
    plotting.footprintPlots(x, y, P, P_xav)
Beispiel #7
0
def RSW_main():

    # Coefficients
    a1, a2, a3, a4, b1, b4, c1, c2, c3, c4, c5, d1, d3, d4, d5, e4, e5, f1, f2, f3, f4 = solver.SOLVER_COEFFICIENTS(
        Ro, Re, K_nd, f_nd, U1_nd, U2_nd, H1_nd, H2_nd, rho1_nd, rho2_nd,
        omega_nd, gamma_nd, dy_nd, N)

    # Solver
    if BC == 'NO-SLIP':
        u1tilde_nd, u2tilde_nd, v1tilde_nd, v2tilde_nd, eta0tilde_nd, eta1tilde_nd = (
            solver.NO_SLIP_SOLVER(a1, a2, a3, a4, b1, b4, c1, c2, c3, c4, c5,
                                  d1, d3, d4, d5, e4, e5, f1, f2, f3, f4,
                                  Ftilde1_nd, Ftilde2_nd, Ftilde3_nd,
                                  Ftilde4_nd, Ftilde5_nd, Ftilde6_nd, N, N2))
    if BC == 'FREE-SLIP':
        u1tilde_nd, u2tilde_nd, v1tilde_nd, v2tilde_nd, eta0tilde_nd, eta1tilde_nd = (
            solver.FREE_SLIP_SOLVER(a1, a2, a3, a4, b1, b4, c1, c2, c3, c4, c5,
                                    d1, d3, d4, d5, e4, e5, f1, f2, f3, f4,
                                    Ftilde1_nd, Ftilde2_nd, Ftilde3_nd,
                                    Ftilde4_nd, Ftilde5_nd, Ftilde6_nd, N, N2))

    #===================================================
    u1_nd, u2_nd, v1_nd, v2_nd, eta0_nd, eta1_nd = solver.SPEC_TO_PHYS(
        u1tilde_nd, u2tilde_nd, v1tilde_nd, v2tilde_nd, eta0tilde_nd,
        eta1tilde_nd, T_nd, Nt, dx_nd, omega_nd, N)

    # Before taking real part, can define an error calculator to call here.

    u1_nd = np.real(u1_nd)
    u2_nd = np.real(u2_nd)
    v1_nd = np.real(v1_nd)
    v2_nd = np.real(v2_nd)
    eta0_nd = np.real(eta0_nd)
    eta1_nd = np.real(eta1_nd)

    # The interface thicknesses defined via the interface heights.
    h1_nd = eta0_nd - eta1_nd
    h2_nd = eta1_nd

    # For use in PV and footprint calculations: the 'full' zonal velocities and interface thicknesses.
    u1_full = np.zeros((N, N, Nt))
    u2_full = np.zeros((N, N, Nt))
    h1_full = np.zeros((N, N, Nt))
    h2_full = np.zeros((N, N, Nt))
    for j in range(0, N):
        u1_full[:, j, :] = u1_nd[:, j, :] + U1_nd[j]
        u2_full[:, j, :] = u2_nd[:, j, :] + U2_nd[j]
        h1_full[:, j, :] = h1_nd[:, j, :] + H1_nd[j]
        h2_full[:, j, :] = h2_nd[:, j, :] + H2_nd[j]

    # Call function calculate PV in each layer.
    #PV1_prime, PV1_full, PV1_BG = PV.vort(u1_nd,v1_nd,h1_nd,u1_full,h1_full,H1_nd,U1_nd,N,Nt,dx_nd,dy_nd,f_nd);
    #PV2_prime, PV2_full, PV2_BG = PV.vort(u2_nd,v2_nd,h2_nd,u2_full,h2_full,H2_nd,U2_nd,N,Nt,dx_nd,dy_nd,f_nd);

    # Calculate footprints using previously calculated PV. Most interseted in the upper layer.
    #P, P_xav = PV.footprint(u1_full,v1_nd,PV1_full,U1_nd,U1,x_nd,y_nd,dx_nd,dy_nd,AmpF_nd,FORCE1,r0,nu,BG1,Fpos,ts,period_days,N,Nt,GAUSS);

    # PLOTS
    #====================================================

    plotting.solutionPlots(x_nd, y_nd, x_grid, y_grid, u1_nd, u2_nd, v1_nd,
                           v2_nd, h1_nd, h2_nd, ts, N, True)
Beispiel #8
0
def RSW_main():
	# Forcing

	#plotting.forcingPlot_save(x_grid,y_grid,F3_nd[:,0:N],FORCE,BG,Fpos,N);

	#F1_nd, F2_nd, F3_nd = forcing.forcingInv(Ftilde1_nd,Ftilde2_nd,Ftilde3_nd,x_nd,y_nd,dx_nd,N);
	#F1_nd, F2_nd = forcing.F12_from_F3(F3_nd,f_nd,dx_nd,dy_nd,N,N);
	#plotting.forcingPlots(x_nd[0:N],y_nd,Ro*F1_nd,Ro*F2_nd,F3_nd,Ftilde1_nd,Ftilde2_nd,Ftilde3_nd,N);

#	sys.exit();
	
	# Coefficients
	a1,a2,a3,a4,b4,c1,c2,c3,c4 = solver.SOLVER_COEFFICIENTS(Ro,Re,K_nd,f_nd,U0_nd,H0_nd,omega_nd,gamma_nd,dy_nd,N)
	# Solver
	if BC == 'NO-SLIP':
		solution = solver.NO_SLIP_SOLVER(a1,a2,a3,a4,f_nd,b4,c1,c2,c3,c4,Ro*Ftilde1_nd,Ro*Ftilde2_nd,Ftilde3_nd,N,N2)
	if BC == 'FREE-SLIP':
		#solution = solver.FREE_SLIP_SOLVER(a1,a2,a3,a4,f_nd,b4,c1,c2,c3,c4,Ro*Ftilde1_nd,Ro*Ftilde2_nd,Ftilde3_nd,N,N2)
		solution = solver.FREE_SLIP_SOLVER4(a1,a2,a3,a4,f_nd,b4,c1,c2,c3,c4,Ro*Ftilde1_nd,Ro*Ftilde2_nd,Ro*Ftilde3_nd,N,N2)

	utilde_nd, vtilde_nd, etatilde_nd = solver.extractSols(solution,N,N2,BC);
	u, v, h = solver.SPEC_TO_PHYS(utilde_nd,vtilde_nd,etatilde_nd,T_nd,dx_nd,omega_nd,N);


	PP = np.zeros(N)
	EEF = 0.

	for iji in range(0,N):
		print(iji)

		ut = np.zeros((N,N),dtype=complex)
		vt = np.zeros((N,N),dtype=complex)
		ht = np.zeros((N,N),dtype=complex)
		
		ut[:,iji] = utilde_nd[:,iji]
		vt[:,iji] = vtilde_nd[:,iji]
		ht[:,iji] = etatilde_nd[:,iji]

		u, v, h = solver.SPEC_TO_PHYS(ut,vt,ht,T_nd,dx_nd,omega_nd,N);

		u = np.real(u)
		v = np.real(v)
		h = np.real(h)
	
		# Normalise all solutions by the (non-dimensional) forcing amplitude. 
		u = u / AmpF_nd
		v = v / AmpF_nd
		h = h / AmpF_nd

		# In order to calculate the vorticities/energies of the system, we require full (i.e. BG + forced response) u and eta.
		h_full = np.zeros((N,N,Nt))
		u_full = np.zeros((N,N,Nt))
		for j in range(0,N):
			h_full[j,:,:] = h[j,:,:] + H0_nd[j]
			u_full[j,:,:] = u[j,:,:] + U0_nd[j]

		PV_prime, PV_full, PV_BG = PV.potentialVorticity(u,v,h,u_full,h_full,H0_nd,U0_nd,N,Nt,dx_nd,dy_nd,f_nd,Ro)
		uq, Uq, uQ, UQ, vq, vQ = PV.fluxes(u,v,U0_nd,PV_prime,PV_BG,N,Nt)
		P, P_xav = PV.footprint(uq,Uq,uQ,UQ,vq,vQ,x_nd,T_nd,dx_nd,dy_nd,N,Nt)

		PP += P_xav

		from scipy.ndimage.measurements import center_of_mass
		iii = center_of_mass(np.abs(P_xav))[0]
		com = y_nd[int(iii)]
		EEF, l = PV.EEF(P_xav,y_nd,com,int(iii),dy_nd,N)
		EEF_north = EEF[0]; EEF_south = EEF[1];
		EEF_tmp = EEF_north - EEF_south;

		EEF += EEF_tmp

	plt.plot(PP)
	plt.show()
	print(EEF)