Beispiel #1
0
def setmember1d(ar1, ar2):
    """
    Return a boolean array set True where first element is in second array.

    See Also
    --------
    numpy.setmember1d : equivalent function for ndarrays.

    """
    ar1 = ma.asanyarray(ar1)
    ar2 = ma.asanyarray(ar2)
    ar = ma.concatenate((ar1, ar2))
    b1 = ma.zeros(ar1.shape, dtype=np.int8)
    b2 = ma.ones(ar2.shape, dtype=np.int8)
    tt = ma.concatenate((b1, b2))

    # We need this to be a stable sort, so always use 'mergesort' here. The
    # values from the first array should always come before the values from the
    # second array.
    perm = ar.argsort(kind="mergesort")
    aux = ar[perm]
    aux2 = tt[perm]
    #    flag = ediff1d( aux, 1 ) == 0
    flag = ma.concatenate((aux[1:] == aux[:-1], [False]))
    ii = ma.where(flag * aux2)[0]
    aux = perm[ii + 1]
    perm[ii + 1] = perm[ii]
    perm[ii] = aux
    #
    indx = perm.argsort(kind="mergesort")[: len(ar1)]
    #
    return flag[indx]
Beispiel #2
0
def setmember1d(ar1, ar2):
    """
    Return a boolean array set True where first element is in second array.

    See Also
    --------
    numpy.setmember1d : equivalent function for ndarrays.

    """
    ar1 = ma.asanyarray(ar1)
    ar2 = ma.asanyarray( ar2 )
    ar = ma.concatenate((ar1, ar2 ))
    b1 = ma.zeros(ar1.shape, dtype = np.int8)
    b2 = ma.ones(ar2.shape, dtype = np.int8)
    tt = ma.concatenate((b1, b2))

    # We need this to be a stable sort, so always use 'mergesort' here. The
    # values from the first array should always come before the values from the
    # second array.
    perm = ar.argsort(kind='mergesort')
    aux = ar[perm]
    aux2 = tt[perm]
#    flag = ediff1d( aux, 1 ) == 0
    flag = ma.concatenate((aux[1:] == aux[:-1], [False]))
    ii = ma.where( flag * aux2 )[0]
    aux = perm[ii+1]
    perm[ii+1] = perm[ii]
    perm[ii] = aux
    #
    indx = perm.argsort(kind='mergesort')[:len( ar1 )]
    #
    return flag[indx]
Beispiel #3
0
def in1d(ar1, ar2, assume_unique=False):
    """
    Test whether each element of an array is also present in a second
    array.

    See Also
    --------
    numpy.in1d : equivalent function for ndarrays

    Notes
    -----
    .. versionadded:: 1.4.0
    """
    if not assume_unique:
        ar1, rev_idx = unique(ar1, return_inverse=True)
        ar2 = unique(ar2)

    ar = ma.concatenate( (ar1, ar2) )
    # We need this to be a stable sort, so always use 'mergesort'
    # here. The values from the first array should always come before
    # the values from the second array.
    order = ar.argsort(kind='mergesort')
    sar = ar[order]
    equal_adj = (sar[1:] == sar[:-1])
    flag = ma.concatenate( (equal_adj, [False] ) )
    indx = order.argsort(kind='mergesort')[:len( ar1 )]

    if assume_unique:
        return flag[indx]
    else:
        return flag[indx][rev_idx]
Beispiel #4
0
def setmember1d(ar1, ar2):
    """ This function is deprecated. Use ma.in1d() instead."""
    ar1 = ma.asanyarray(ar1)
    ar2 = ma.asanyarray( ar2 )
    ar = ma.concatenate((ar1, ar2 ))
    b1 = ma.zeros(ar1.shape, dtype = np.int8)
    b2 = ma.ones(ar2.shape, dtype = np.int8)
    tt = ma.concatenate((b1, b2))

    # We need this to be a stable sort, so always use 'mergesort' here. The
    # values from the first array should always come before the values from the
    # second array.
    perm = ar.argsort(kind='mergesort')
    aux = ar[perm]
    aux2 = tt[perm]
#    flag = ediff1d( aux, 1 ) == 0
    flag = ma.concatenate((aux[1:] == aux[:-1], [False]))
    ii = ma.where( flag * aux2 )[0]
    aux = perm[ii+1]
    perm[ii+1] = perm[ii]
    perm[ii] = aux
    #
    indx = perm.argsort(kind='mergesort')[:len( ar1 )]
    #
    return flag[indx]
Beispiel #5
0
def intersect1d(ar1, ar2, assume_unique=False):
    """
    Returns the unique elements common to both arrays.

    Masked values are considered equal one to the other.
    The output is always a masked array.

    See Also
    --------
    numpy.intersect1d : equivalent function for ndarrays.

    Examples
    --------
    >>> x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
    >>> y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
    >>> intersect1d(x, y)
    masked_array(data = [1 3 --],
                 mask = [False False  True],
           fill_value = 999999)

    """
    if assume_unique:
        aux = ma.concatenate((ar1, ar2))
    else:
        # Might be faster than unique1d( intersect1d( ar1, ar2 ) )?
        aux = ma.concatenate((unique(ar1), unique(ar2)))
    aux.sort()
    return aux[aux[1:] == aux[:-1]]
Beispiel #6
0
def in1d(ar1, ar2, assume_unique=False):
    """
    Test whether each element of an array is also present in a second
    array.

    See Also
    --------
    numpy.in1d : equivalent function for ndarrays

    Notes
    -----
    .. versionadded:: 1.4.0
    """
    if not assume_unique:
        ar1, rev_idx = unique(ar1, return_inverse=True)
        ar2 = unique(ar2)

    ar = ma.concatenate((ar1, ar2))
    # We need this to be a stable sort, so always use 'mergesort'
    # here. The values from the first array should always come before
    # the values from the second array.
    order = ar.argsort(kind='mergesort')
    sar = ar[order]
    equal_adj = (sar[1:] == sar[:-1])
    flag = ma.concatenate((equal_adj, [False]))
    indx = order.argsort(kind='mergesort')[:len(ar1)]

    if assume_unique:
        return flag[indx]
    else:
        return flag[indx][rev_idx]
Beispiel #7
0
def setmember1d(ar1, ar2):
    """ This function is deprecated. Use ma.in1d() instead."""
    ar1 = ma.asanyarray(ar1)
    ar2 = ma.asanyarray(ar2)
    ar = ma.concatenate((ar1, ar2))
    b1 = ma.zeros(ar1.shape, dtype=np.int8)
    b2 = ma.ones(ar2.shape, dtype=np.int8)
    tt = ma.concatenate((b1, b2))

    # We need this to be a stable sort, so always use 'mergesort' here. The
    # values from the first array should always come before the values from the
    # second array.
    perm = ar.argsort(kind='mergesort')
    aux = ar[perm]
    aux2 = tt[perm]
    #    flag = ediff1d( aux, 1 ) == 0
    flag = ma.concatenate((aux[1:] == aux[:-1], [False]))
    ii = ma.where(flag * aux2)[0]
    aux = perm[ii + 1]
    perm[ii + 1] = perm[ii]
    perm[ii] = aux
    #
    indx = perm.argsort(kind='mergesort')[:len(ar1)]
    #
    return flag[indx]
Beispiel #8
0
def intersect1d(ar1, ar2, assume_unique=False):
    """
    Returns the unique elements common to both arrays.

    Masked values are considered equal one to the other.
    The output is always a masked array.

    See Also
    --------
    numpy.intersect1d : equivalent function for ndarrays.

    Examples
    --------
    >>> x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
    >>> y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
    >>> intersect1d(x, y)
    masked_array(data = [1 3 --],
                 mask = [False False  True],
           fill_value = 999999)

    """
    if assume_unique:
        aux = ma.concatenate((ar1, ar2))
    else:
        # Might be faster than unique1d( intersect1d( ar1, ar2 ) )?
        aux = ma.concatenate((unique(ar1), unique(ar2)))
    aux.sort()
    return aux[aux[1:] == aux[:-1]]
Beispiel #9
0
def setxor1d(ar1, ar2):
    """
    Set exclusive-or of 1D arrays with unique elements.

    See Also
    --------
    numpy.setxor1d : equivalent function for ndarrays

    """
    aux = ma.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux
    aux.sort()
    auxf = aux.filled()
#    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = ma.concatenate(([True], (auxf[1:] != auxf[:-1]), [True]))
#    flag2 = ediff1d( flag ) == 0
    flag2 = (flag[1:] == flag[:-1])
    return aux[flag2]
Beispiel #10
0
def union1d(ar1, ar2):
    """
    Union of two arrays.

    See also
    --------
    numpy.union1d : equivalent function for ndarrays.

    """
    return unique(ma.concatenate((ar1, ar2)))
Beispiel #11
0
def union1d(ar1, ar2):
    """
    Union of two arrays.

    See also
    --------
    numpy.union1d : equivalent function for ndarrays.

    """
    return unique(ma.concatenate((ar1, ar2)))
Beispiel #12
0
def setxor1d(ar1, ar2):
    """
    Set exclusive-or of 1D arrays with unique elements.

    See Also
    --------
    numpy.setxor1d : equivalent function for ndarrays

    """
    aux = ma.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux
    aux.sort()
    auxf = aux.filled()
    #    flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
    flag = ma.concatenate(([True], (auxf[1:] != auxf[:-1]), [True]))
    #    flag2 = ediff1d( flag ) == 0
    flag2 = flag[1:] == flag[:-1]
    return aux[flag2]
Beispiel #13
0
def union1d(ar1, ar2):
    """
    Union of 1D arrays with unique elements.

    See also
    --------
    numpy.union1d : equivalent function for ndarrays.

    """
    return unique1d(ma.concatenate((ar1, ar2)))
Beispiel #14
0
def union1d(ar1, ar2):
    """
    Union of 1D arrays with unique elements.

    See also
    --------
    numpy.union1d : equivalent function for ndarrays.

    """
    return unique1d(ma.concatenate((ar1, ar2)))
Beispiel #15
0
def concatenate_ds(datasets, axis=0):
    """ concatenate two datasets along an existing dimension

    Parameters:
    -----------
    datasets: sequence of datasets 
    axis: axis along which to concatenate

    Returns:
    --------
    joint Dataset along axis

    NOTE: will raise an error if variables are there which do not contain the required dimension

    See Also:
    ---------
    stack_ds

    Examples:
    ---------
    >>> a = da.zeros(axes=[list('abc')], dims=('x0',))  # 1-D DimArray
    >>> b = da.zeros(axes=[list('abc'), [1,2]], dims=('x0','x1')) # 2-D DimArray
    >>> ds = Dataset({'a':a,'b':b}) # dataset of 2 variables from an experiment
    >>> a2 = da.ones(axes=[list('def')], dims=('x0',)) 
    >>> b2 = da.ones(axes=[list('def'), [1,2]], dims=('x0','x1')) # 2-D DimArray
    >>> ds2 = Dataset({'a':a2,'b':b2}) # dataset of 2 variables from a second experiment
    >>> concatenate_ds([ds, ds2])
    Dataset of 2 variables
    dimensions: 'x0', 'x1'
    0 / x0 (6): a to f
    1 / x1 (2): 1 to 2
    a: ('x0',)
    b: ('x0', 'x1')
    """
    # find the list of variables common to all datasets
    variables = None
    for ds in datasets:

        # check that variables have the same variables
        if variables is None:
            variables = ds.keys()
        else:
            assert sorted(ds.keys()) == sorted(
                variables), "variables differ across datasets"

    # Compute concatenated dataset
    dataset = Dataset()
    for v in variables:
        arrays = [ds[v] for ds in datasets]
        array = concatenate(arrays, axis=axis)
        dataset[v] = array

    return dataset
Beispiel #16
0
def concatenate_ds(datasets, axis=0):
    """ concatenate two datasets along an existing dimension

    Parameters:
    -----------
    datasets: sequence of datasets 
    axis: axis along which to concatenate

    Returns:
    --------
    joint Dataset along axis

    NOTE: will raise an error if variables are there which do not contain the required dimension

    See Also:
    ---------
    stack_ds

    Examples:
    ---------
    >>> a = da.zeros(axes=[list('abc')], dims=('x0',))  # 1-D DimArray
    >>> b = da.zeros(axes=[list('abc'), [1,2]], dims=('x0','x1')) # 2-D DimArray
    >>> ds = Dataset({'a':a,'b':b}) # dataset of 2 variables from an experiment
    >>> a2 = da.ones(axes=[list('def')], dims=('x0',)) 
    >>> b2 = da.ones(axes=[list('def'), [1,2]], dims=('x0','x1')) # 2-D DimArray
    >>> ds2 = Dataset({'a':a2,'b':b2}) # dataset of 2 variables from a second experiment
    >>> concatenate_ds([ds, ds2])
    Dataset of 2 variables
    dimensions: 'x0', 'x1'
    0 / x0 (6): a to f
    1 / x1 (2): 1 to 2
    a: ('x0',)
    b: ('x0', 'x1')
    """
    # find the list of variables common to all datasets
    variables = None
    for ds in datasets:

        # check that variables have the same variables
        if variables is None:
            variables = ds.keys()
        else:
            assert sorted(ds.keys()) == sorted(variables), "variables differ across datasets"

    # Compute concatenated dataset
    dataset = Dataset()
    for v in variables:
        arrays = [ds[v] for ds in datasets]
        array = concatenate(arrays, axis=axis)
        dataset[v] = array

    return dataset
Beispiel #17
0
 def __getitem__(self,key):
     if isinstance(key, str):
         raise MAError, "Unavailable for masked array."
     if type(key) is not tuple:
         key = (key,)
     objs = []
     scalars = []
     final_dtypedescr = None
     for k in range(len(key)):
         scalar = False
         if type(key[k]) is slice:
             step = key[k].step
             start = key[k].start
             stop = key[k].stop
             if start is None:
                 start = 0
             if step is None:
                 step = 1
             if type(step) is type(1j):
                 size = int(abs(step))
                 newobj = np.linspace(start, stop, num=size)
             else:
                 newobj = np.arange(start, stop, step)
         elif type(key[k]) is str:
             if (key[k] in 'rc'):
                 self.matrix = True
                 self.col = (key[k] == 'c')
                 continue
             try:
                 self.axis = int(key[k])
                 continue
             except (ValueError, TypeError):
                 raise ValueError, "Unknown special directive"
         elif type(key[k]) in np.ScalarType:
             newobj = asarray([key[k]])
             scalars.append(k)
             scalar = True
         else:
             newobj = key[k]
         objs.append(newobj)
         if isinstance(newobj, ndarray) and not scalar:
             if final_dtypedescr is None:
                 final_dtypedescr = newobj.dtype
             elif newobj.dtype > final_dtypedescr:
                 final_dtypedescr = newobj.dtype
     if final_dtypedescr is not None:
         for k in scalars:
             objs[k] = objs[k].astype(final_dtypedescr)
     res = concatenate(tuple(objs),axis=self.axis)
     return self._retval(res)
Beispiel #18
0
 def __getitem__(self, key):
     if isinstance(key, str):
         raise MAError, "Unavailable for masked array."
     if type(key) is not tuple:
         key = (key,)
     objs = []
     scalars = []
     final_dtypedescr = None
     for k in range(len(key)):
         scalar = False
         if type(key[k]) is slice:
             step = key[k].step
             start = key[k].start
             stop = key[k].stop
             if start is None:
                 start = 0
             if step is None:
                 step = 1
             if type(step) is type(1j):
                 size = int(abs(step))
                 newobj = np.linspace(start, stop, num=size)
             else:
                 newobj = np.arange(start, stop, step)
         elif type(key[k]) is str:
             if key[k] in "rc":
                 self.matrix = True
                 self.col = key[k] == "c"
                 continue
             try:
                 self.axis = int(key[k])
                 continue
             except (ValueError, TypeError):
                 raise ValueError, "Unknown special directive"
         elif type(key[k]) in np.ScalarType:
             newobj = asarray([key[k]])
             scalars.append(k)
             scalar = True
         else:
             newobj = key[k]
         objs.append(newobj)
         if isinstance(newobj, ndarray) and not scalar:
             if final_dtypedescr is None:
                 final_dtypedescr = newobj.dtype
             elif newobj.dtype > final_dtypedescr:
                 final_dtypedescr = newobj.dtype
     if final_dtypedescr is not None:
         for k in scalars:
             objs[k] = objs[k].astype(final_dtypedescr)
     res = concatenate(tuple(objs), axis=self.axis)
     return self._retval(res)
Beispiel #19
0
def _covhelper(x, y=None, rowvar=True, allow_masked=True):
    """
    Private function for the computation of covariance and correlation
    coefficients.

    """
    x = ma.array(x, ndmin=2, copy=True, dtype=float)
    xmask = ma.getmaskarray(x)
    # Quick exit if we can't process masked data
    if not allow_masked and xmask.any():
        raise ValueError("Cannot process masked data...")
    #
    if x.shape[0] == 1:
        rowvar = True
    # Make sure that rowvar is either 0 or 1
    rowvar = int(bool(rowvar))
    axis = 1 - rowvar
    if rowvar:
        tup = (slice(None), None)
    else:
        tup = (None, slice(None))
    #
    if y is None:
        xnotmask = np.logical_not(xmask).astype(int)
    else:
        y = array(y, copy=False, ndmin=2, dtype=float)
        ymask = ma.getmaskarray(y)
        if not allow_masked and ymask.any():
            raise ValueError("Cannot process masked data...")
        if xmask.any() or ymask.any():
            if y.shape == x.shape:
                # Define some common mask
                common_mask = np.logical_or(xmask, ymask)
                if common_mask is not nomask:
                    x.unshare_mask()
                    y.unshare_mask()
                    xmask = x._mask = y._mask = ymask = common_mask
        x = ma.concatenate((x, y), axis)
        xnotmask = np.logical_not(np.concatenate((xmask, ymask),
                                                 axis)).astype(int)
    x -= x.mean(axis=rowvar)[tup]
    return (x, xnotmask, rowvar)
Beispiel #20
0
def _covhelper(x, y=None, rowvar=True, allow_masked=True):
    """
    Private function for the computation of covariance and correlation
    coefficients.

    """
    x = ma.array(x, ndmin=2, copy=True, dtype=float)
    xmask = ma.getmaskarray(x)
    # Quick exit if we can't process masked data
    if not allow_masked and xmask.any():
        raise ValueError("Cannot process masked data...")
    #
    if x.shape[0] == 1:
        rowvar = True
    # Make sure that rowvar is either 0 or 1
    rowvar = int(bool(rowvar))
    axis = 1 - rowvar
    if rowvar:
        tup = (slice(None), None)
    else:
        tup = (None, slice(None))
    #
    if y is None:
        xnotmask = np.logical_not(xmask).astype(int)
    else:
        y = array(y, copy=False, ndmin=2, dtype=float)
        ymask = ma.getmaskarray(y)
        if not allow_masked and ymask.any():
            raise ValueError("Cannot process masked data...")
        if xmask.any() or ymask.any():
            if y.shape == x.shape:
                # Define some common mask
                common_mask = np.logical_or(xmask, ymask)
                if common_mask is not nomask:
                    x.unshare_mask()
                    y.unshare_mask()
                    xmask = x._mask = y._mask = ymask = common_mask
        x = ma.concatenate((x, y), axis)
        xnotmask = np.logical_not(np.concatenate((xmask, ymask), axis)).astype(int)
    x -= x.mean(axis=rowvar)[tup]
    return (x, xnotmask, rowvar)
Beispiel #21
0
def intersect1d(ar1, ar2):
    """
    Returns the repeated or unique elements belonging to the two arrays.

    Masked values are assumed equals one to the other.
    The output is always a masked array

    See Also
    --------
    numpy.intersect1d : equivalent function for ndarrays.

    Examples
    --------
    >>> x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
    >>> y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
    >>> intersect1d(x, y)
    masked_array(data = [1 1 3 3 --],
                 mask = [False False False False  True],
           fill_value = 999999)
    """
    aux = ma.concatenate((ar1,ar2))
    aux.sort()
    return aux[aux[1:] == aux[:-1]]
Beispiel #22
0
def intersect1d(ar1, ar2):
    """
    Returns the repeated or unique elements belonging to the two arrays.

    Masked values are assumed equals one to the other.
    The output is always a masked array

    See Also
    --------
    numpy.intersect1d : equivalent function for ndarrays.

    Examples
    --------
    >>> x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
    >>> y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
    >>> intersect1d(x, y)
    masked_array(data = [1 1 3 3 --],
                 mask = [False False False False  True],
           fill_value = 999999)
    """
    aux = ma.concatenate((ar1, ar2))
    aux.sort()
    return aux[aux[1:] == aux[:-1]]
Beispiel #23
0
def intersect1d_nu(ar1, ar2):
    """ This function is deprecated. Use ma.intersect1d() instead."""
    # Might be faster than unique1d( intersect1d( ar1, ar2 ) )?
    aux = ma.concatenate((unique1d(ar1), unique1d(ar2)))
    aux.sort()
    return aux[aux[1:] == aux[:-1]]
Beispiel #24
0
def intersect1d_nu(ar1, ar2):
    """ This function is deprecated. Use ma.intersect1d() instead."""
    # Might be faster than unique1d( intersect1d( ar1, ar2 ) )?
    aux = ma.concatenate((unique1d(ar1), unique1d(ar2)))
    aux.sort()
    return aux[aux[1:] == aux[:-1]]